DOI QR코드

DOI QR Code

The Effect of Sputtering Process Variables on the Properties of Pd Alloy Hydrogen Separation Membranes

스퍼터 공정변수가 팔라듐 합금 수소분리막의 특성에 미치는 영향

  • Han, Jae-Yun (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Joo, Sae-Rom (Department of SDM (Semiconductor Display Mechatronics), Kyonggi University) ;
  • Lee, Jun-Hyong (Department of SDM (Semiconductor Display Mechatronics), Kyonggi University) ;
  • Park, Dong-Gun (Research Technology Center, Umicore) ;
  • Kim, Dong-Won (Department of Advanced Materials Engineering, Kyonggi University)
  • 한재윤 (경기대학교 신소재공학과) ;
  • 주새롬 (경기대학교 SDM전공) ;
  • 이준형 (경기대학교 SDM전공) ;
  • 박동건 (한국 유미코아 천안 리서치 테크놀로지 센터) ;
  • 김동원 (경기대학교 신소재공학과)
  • Received : 2013.12.06
  • Accepted : 2013.12.25
  • Published : 2013.12.31

Abstract

It is generally recognized that thin Pd-Cu alloy films fabricated by sputtering show a wide range of microstructures and properties, both of which are highly dependent on the sputtering conditions. In view of this, the present study aims to investigate the relationship between the performance of hydrogen separation membranes and the microstructure of Pd alloy films depending on sputtering deposition conditions such as substrate temperature, working pressure, and DC power. We fabricated thin and dense Pd-Cu alloy membranes by the micro-polishing of porous Ni support, an advanced Pd-Cu sputtered multi-deposition under the conditions of high substrate temperature / low working pressure / high DC power, and a followed by Cu-reflow heat-treatment. The result of a hydrogen permeation test indicated that the selectivity for $H_2/N_2$ was infinite because of the void-free and dense surface of the Pd alloy membranes, and the hydrogen permeability was 10.5 $ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ for a 6 ${\mu}m$ membrane thickness.

Keywords

References

  1. S. Uemiya, N. Sato, H. Ando, T. Matsuda, E. Kikuchi, Appl. Catal., 67 (1990) 223. https://doi.org/10.1016/S0166-9834(00)84445-0
  2. J. C. Amphlett, K. A. M. Cerber, J. M. Davis, R. F. Mann, B. A. Peppley, O. M. Stokes, Int. J. Hydrogen Energy, 19 (1994) 131. https://doi.org/10.1016/0360-3199(94)90117-1
  3. K. A. Petersen, C. S. Nielsen, S. L. Jorgensen, Membrane Reforming for Hydrogen, Catal. Today 46 (1998) 193. https://doi.org/10.1016/S0920-5861(98)00341-1
  4. Y. S. Cheng, K. L. Yeung, J. Membr. Sci., 158 (1999) 127. https://doi.org/10.1016/S0376-7388(99)00009-5
  5. O. Hatlevik, S. K. Gade, M. K. Keeling, P. M. Thoen, J. D. Way, Sep. Purif. Technol., 73 (2010) 59. https://doi.org/10.1016/j.seppur.2009.10.020
  6. H. T. Hoang, H. D. Tong, F. C. Gielens, H. V. Jansen, M. C. Elwenspoek, Mat. Let., 58 (2004) 525. https://doi.org/10.1016/S0167-577X(03)00539-1
  7. S. E. Nam, K. H. Lee, J. Membr. Sci., 170 (2000) 91. https://doi.org/10.1016/S0376-7388(99)00359-2
  8. R. Bhandari, Y. H. Ma, J. Membr. Sci., 334 (2009) 50. https://doi.org/10.1016/j.memsci.2009.02.014
  9. C. S. Jun, K. H. J. Membr. Sci., 176 (2000) 121. https://doi.org/10.1016/S0376-7388(00)00438-5
  10. G. Xomeritakis, Y. S. Lin, J. Membr. Sci., 133 (1997) 217. https://doi.org/10.1016/S0376-7388(97)00084-7
  11. H. Gao, Y. S. Lin, Y. Li, B. Zhang, J. Membr. Sci., 265 (2005) 142. https://doi.org/10.1016/j.memsci.2005.04.050
  12. B. I. Woo, D. W. Kim, Kor. Inst. Surf. Eng., 42(5) (2009) 232. https://doi.org/10.5695/JKISE.2009.42.5.232
  13. D. W. Kim, Y. J. Park, J. W. Moon, S. K. Ryi, J. S. Park, Thin Solid Films, 516 (2008) 3036. https://doi.org/10.1016/j.tsf.2007.11.126
  14. S. K. Ryi, J. S. Park, S. H. Kim, S. H. Cho, D. W. Kim, K. Y. Um, Sep. Purif. Technol., 50 (2006) 82. https://doi.org/10.1016/j.seppur.2005.11.024
  15. S. K. Ryi, J. S. Park, K. R. Hwang, C. B. Lee, S. W. Lee, Int. J. Hydrogen Energy, 34 (2011) 113776.
  16. S. K. Ryi, J. S. Park, S. H. Kim, S. H. Cho, J. S. Park, D. W. Kim., J. Membr. Sci., 279 (2006) 439. https://doi.org/10.1016/j.memsci.2005.12.035
  17. D. Wang, J. Tong, H. Xu, Y. Matsumara, Catal. Today, 93 (2004) 689.
  18. D. G. Park, H. J. Kim, J. H. Kim, D. W. Kim, J. Kor. Inst. Surf. Eng., 45(4) (2012) 248. https://doi.org/10.5695/JKISE.2012.45.6.248
  19. H.-B. Zhao, G.-X. Xing, G. V. Baron, Catal. Today, 56 (2000) 89. https://doi.org/10.1016/S0920-5861(99)00266-7
  20. J. A. Thornton, J. Vac. Sci. Technol., 11 (1974) 666. https://doi.org/10.1116/1.1312732
  21. R. Messier, A. P. Girl, R. A. Roy, J. Vac. Sci. Technol., A2 (1984) 500.
  22. D. W. Kim, Y. J. Park, B. I. Woo, S. M. Kang, J. S. Park, Jpn. J. Appl. Phys. 40 (2010) 018003.

Cited by

  1. Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes vol.49, pp.3, 2016, https://doi.org/10.5695/JKISE.2016.49.3.286