DOI QR코드

DOI QR Code

Pre-treatment Technology of Wastewater Sludge for Enhanced Biogas Production in Anaerobic Digestion

혐기소화에서의 바이오가스 생산 증진을 위한 슬러지 전처리 기술

  • Kim, Dong-Jin (Department of Environmental Sciences and Biotechnology & Institute of Energy and Environment, Hallym University)
  • 김동진 (한림대학교 환경생명공학과.에너지환경연구소)
  • Received : 2013.05.24
  • Accepted : 2013.05.29
  • Published : 2013.12.31

Abstract

Economic feasibility is one of the most important factors in energy production from regenerative biomass. From the aspect, biogas from anaerobic digestion of wastewater sludge is regarded as the most economical because of its cheap substrate and additional income from the disposal of waste sludge. Sludge hydrolysis has been regarded as the rate limiting step of anaerobic digestion and many sludge pre-treatment technologies have been developed to accelerate anaerobic sludge digestion for enhanced biogas production. Various sludge pre-treatment technologies including biological, thermo hydrolysis, ultrasonic, and mechanical methods have been applied to full-scale systems. Sludge pre-treatment increased the efficiency of anaerobic digestion by enhancing hydrolysis, reducing residual soilds, and increasing biogas production. This paper introduces the characteristics of various sludge pre-treatment technologies and the energy balance and economic feasibility of each technology were compared to prepare a guideline for the selection of feasible pre-treatment technology. It was estimated that thermophilic digestion and thermal hydrolysis were most economical technology followed by Cell rupture$^{TM}$, OpenCEL$^{TM}$, MicroSludge$^{TM}$, and ultrasound. The cost for waste sludge disposal shares the biggest portion in the economic analysis, therefore, water content of the waste sludge was the most important factor to be controlled.

재생 원료인 바이오매스를 이용한 에너지 생산에 있어서 경제성은 가장 중요한 인자 중 하나이다. 이러한 관점에서 슬러지 혐기소화에 의해 생산되는 바이오가스는 다른 바이오매스에 비해 매우 저렴하며 처분 비용 절감으로 얻는 이익이 부가적으로 발생하기 때문에 경제성이 매우 높다. 슬러지 혐기소화에서 기질의 가수분해 속도는 전체 소화 성능을 결정짓는 인자이며 혐기소화 속도를 향상시키기 위한 슬러지 전처리 기술이 많이 개발되었다. 슬러지 전처리는 생물학적, 열 가수분해, 초음파, 기계적 방법 등 다양한 기술이 실제 시설에 적용되었다. 전처리는 슬러지 가용화를 촉진하고 고형물을 감소시키면서 바이오가스 생산을 늘리는 등 혐기소화 효율을 향상시켰다. 본문에서는 전처리 방법의 기술적 특성을 소개하고 각 전처리 방법의 에너지 수지와 경제성을 비교하여 적절한 전처리 기술을 선정하기 위한 기준을 마련하고자 하였다. 조사 결과 고온 혐기소화와 열 가수분해가 가장 경제성이 높고 다음으로 Cell rupture$^{TM}$, OpenCEL$^{TM}$, MicroSludge$^{TM}$, 초음파의 순서로 평가되었다. 경제성 평가에 있어서 슬러지의 최종 처분 비용이 가장 큰 요소가 되며 따라서 최종 처분 슬러지의 수분 함량이 경제성 평가에 결정적인 역할을 하였다.

Keywords

References

  1. http://attfile.konetic.or.kr/konetic/xml/market/51A1A0720223.pdf
  2. Gujer, W., and Zehnder, A. J. B., "Conversion Processes in Anaerobic Digestion," Water Sci. Technol., 15(8-9), 127-167 (1983).
  3. Parkin, J. F., and Owen, W. F., "Fundamentals of Anaerobic Digestion of Wastewater Sludge," J. Environ. Eng. Div. Amer. Soc. Civil Eng., 122, 867-920 (1986).
  4. http://en.wikipedia.org/wiki/Anaerobic_digestion
  5. Appels, L., Baeyens, J., Degreve, J., and Dewil, R., "Principles and Potential of the Anaerobic Digestion of Waste-activated Sludge," Prog. Energy Combust. Sci., 34, 755-781 (2008). https://doi.org/10.1016/j.pecs.2008.06.002
  6. Carrere, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgene, J. P., Steyer, J. P., and Ferrer, I., "Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review," J. Hazard. Mat., 183, 1-15 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.129
  7. Rudolfs, W., and Heukelelian, H., "Thermophilic Digestion of Sewage Sludge Solids. I.-Preliminary Paper," Ind. Eng. Chem., 22, 96-99 (1930). https://doi.org/10.1021/ie50241a600
  8. Roberts, R., Son, L., Davies, W. J., and Forster, C. F., "Two Stage, Thermophilic/Mesophilic Anaerobic Digestion of Sewage Sludge," Trans. Chem., 77(B), 93-97 (1999).
  9. Oles, J., Dichtl, N., and Niehoff, H. H., "Full Scale Experience of Two Stage Thermophilic/Mesophilic Sludge Digestion," Water Sci. Technol., 36(6-7), 449-456 (1997). https://doi.org/10.1016/S0273-1223(97)00554-4
  10. Aoki, N., and Kawase, M., "Development of High-performance Thermophilic Two Phase Digestion Process," Water Sci. Technol., 23, 1147-1156 (1991).
  11. Ferrer, I., Vazquez, F., and Font, X., "Long Term Operation of a Thermophilic Anaerobic Reactor: Process Stability and Efficiency at Decreasing Sludge Retention Time," Biores. Technol., 101, 2972-2980 (2010). https://doi.org/10.1016/j.biortech.2009.12.006
  12. Song, Y. C., Kwon, S. J., and Woo, J. H., "Mesophilic and Thermophilic Temperature Co-phase Anaerobic Digestion Compared with Single Stage Mesophilic and Thermophilic Digestion of Sewage Sludge," Water Res., 38, 1653-1662(2004). https://doi.org/10.1016/j.watres.2003.12.019
  13. Ponsa, S., Ferrer, I., Vazquez, F., and Font, X., "Optimization of the Hydrolytic Acidogenic Anaerobic Digestion Stage ($55^{\circ}C$) of Sewage Sludge: Influence of pH and Solid Content," Water Res., 42, 3972-3980 (2008). https://doi.org/10.1016/j.watres.2008.07.002
  14. Ge, H., Jensen, P. D., and Batstone, D. J., "Pre-treatment Mechanisms during Thermophilic-mesophilic Temperature Phased Anaerobic Digestion of Primary Sludge," Water Res., 44, 123-130 (2010). https://doi.org/10.1016/j.watres.2009.09.005
  15. Cabirol, N., Oropeza, M. R., and Noyola, A., "Removal of Helminth Eggs, and Fecal Coliforms by Anaerobic Thermophilic Sludge Digestion," Water Sci. Technol., 45(10), 269-274 (2002).
  16. De Leon, C., and Jenkins, D., "Removal of Fecal Coliforms by Thermophilic Anaerobic Digestion," Water Sci. Technol., 46(10), 147-152 (2002).
  17. Hartmann, H., and Ahring, B. K., "A Novel Process Configuration for Anaerobic Digestion of Source-sorted Household Waste Using Hyper-thermophilic Posttreatment," Biotechnol. Bioeng., 90, 830-837 (2005). https://doi.org/10.1002/bit.20485
  18. Lu, J. Q., Gavala, H. N., Skiadas, I. V., Mladenovska, Z., and Ahring, B. K., "Improving Anaerobic Sewage Sludge Digestion by Implementation of a Hyper-thermophilic Prehydrolysis Step," J. Environ. Manage., 88, 881-889 (2008). https://doi.org/10.1016/j.jenvman.2007.04.020
  19. Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., and Ahring, B. K., "Mesophilic and Thermophilic Anaerobic Digestion of Primary and Secondary Sludge," Effect of Pretreatment at Elevated Temperature," Water Res., 37, 4561-4572 (2003). https://doi.org/10.1016/S0043-1354(03)00401-9
  20. Climent, M., Ferrer, I., Baeza, M. D., Artola, A., Vazquez, F., and Font, X., "Effects of Thermal and Mechanical Pretreatments of Secondary Sludge on Biogas Production under Thermophilic Conditions," Chem. Eng. J., 133, 335-342 (2007). https://doi.org/10.1016/j.cej.2007.02.020
  21. Bolzonella, D., Pavan, P., Zanette, M., and Cecchi, F., "Twophase Anaerobic Digestion of Waste Activated Sludge: Effect of an Extreme Thermophilic Prefermentation," Ind. Eng. Chem. Res., 46, 6650-6655 (2007). https://doi.org/10.1021/ie061627e
  22. Ferrer, I., Ponsa, S., Vazquez, F., and Font, X., "Increasing Biogas Production by Thermal ($70^{\circ}C$) Sludge Pre-treatment prior to Thermophilic Anaerobic Digestion," Biochem. Eng. J., 42, 186-192 (2008). https://doi.org/10.1016/j.bej.2008.06.020
  23. Ferrer, I., Serrano, E., Ponsa, S., Vazquez, F., and Font, X., "Enhancement of Thermophilic Anaerobic Sludge Digestion by $70^{\circ}C$ Pre-treatment: Energy Considerations," J. Residuals Sci. Technol., 6, 11-18 (2009).
  24. Schafer P., Farrell J., Newman, G., and Vandenburgh S., "Advanced Anaerobic Digestion Performance Comparisons," WEFTEC 2002, Sep. 29, Chicago, IL, (2002).
  25. Borja, R., Banks, C. J., and Garrido, A., "Kinetics of Blackolive Wastewater Treatment by the Active Sludge System," Process Biochem., 29, 587-593 (1994). https://doi.org/10.1016/0032-9592(94)80023-5
  26. Subramanian, S., Kumar, N., Murthy, S., and Novak, J. T., "Effect of Anaerobic Digestion and Anaerobic/Aerobic Digestion Processes on Sludge Dewatering," J. Residuals Sci. Technol., 4, 17-23 (2007).
  27. Shiota, N., Akashi, A., and Hasegawa, S., "A Strategy in Wastewater Treatment Process for Significant Reduction of Excess Sludge Production," Water Sci. Technol., 45, 127-134 (2002).
  28. Hasegawa, S., Shiota, N., Katsura, K., and Akashi, A., "Solubilization of Organic Sludge by Thermophilic Aerobic Bacteria as a Pretreatment for Anaerobic Digestion," Water Sci. Technol., 41, 163-169 (2000).
  29. Sakai, Y., Aoyagi, T., Shiota, N., Akashi, A., and Hasegawa, S., "Complete Ddecomposition of Biological Waste Sludge by Thermophilic Aerobic Bacteria," Water Sci. Technol., 42, 81-88 (2000).
  30. Dumas, C., Perez, S., Paul, E., and Lefebvre, X., "Combined Thermophilic Aerobic Process and Conventional Anaerobic Digestion: Effect on Sludge Biodegradation and Methane Production," Bioresour. Technol., 101, 2629-2636 (2010). https://doi.org/10.1016/j.biortech.2009.10.065
  31. Deleris, S., Larose, A., Geaugey, V., and Lebrun, T., "Innovative Strategies for the Reduction of Sludge Production in Activated Sludge Plant: $BIOLYSIS^{(R)}$ O and $BIOLYSIS^{(R)}$ E," in IWA International Conference on Biosolids 2003, Water Sludge as a Resource, Jun. 23-25, Trondheim, Norway, (2003).
  32. Tanaka, S., Kobayashi, T., Kamiyama, K. I., and Bildan, L. N. S., "Effects of Thermochemical Pretreatment on the Anaerobic Digestion of Waste Activated Sludge," Water Sci. Technol., 35, 209-215 (1997). https://doi.org/10.1016/S0273-1223(97)88229-7
  33. Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., and Lee, J., "Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge," J. Biosci. Bioeng., 95, 271-275 (2003). https://doi.org/10.1016/S1389-1723(03)80028-2
  34. Valo, A., Carrere, H., and Delgenes, J. P., "Thermal, Chemical and Thermo-chemical Pretreatment of Waste Activated Sludge for Anaerobic Digestion," J. Chem. Technol. Biotechnol., 79, 1197-1203 (2004). https://doi.org/10.1002/jctb.1106
  35. Mouneimne, A. H., Carrere, H., Bernet, N., and Delgenes, J. P., "Effect of Saponification on the Anaerobic Digestion of Solid Fatty Residues," Bioresour. Technol., 90, 89-94 (2003). https://doi.org/10.1016/S0960-8524(03)00091-9
  36. Everret, J. G., "The Effect of pH on the Heat Treatment of Sewage Sludges," Water Res., 8, 899-906 (1974). https://doi.org/10.1016/0043-1354(74)90104-3
  37. Heo, N. H., Park, S. C., and Lee, J. S., "Single-stage Anaerobic Codigestion for Mixture Wastes of Simulated Korean Food Waste and Waste Activated Sludge," Appl. Biochem. Biotechnol., 105, 567-579 (2003).
  38. Jolly, M., and Gillard, J., "The Economics of Advanced Digestion," 14th European Biosolids and Organic Resources Conference and Exhibition, Nov. 9-11, Leeds, UK, (2009).
  39. Crawford, G., and Sandino, J., Energy Efficiency in Wastewater Treatment in North America: a Compendium of Best Practices and Case Studies of Novel Approaches, IWA Publishing, London, 2010, pp. 3-14-3-19.
  40. Yasui, H., and Shibata, M., "An Innovative Approach to Reduce Excess Sludge Production in the Activated Sludge Ppocess," Water Sci. Technol., 30(9), 11-20 (1994).
  41. Sakai, Y., Fukasu, T., Yasui, H., and Shibata, M., "An Activated Sludge Process without Excess Sludge Production," Water Sci. Technol., 36(11), 163-170 (1997). https://doi.org/10.1016/S0273-1223(97)00704-X
  42. Chu, L. B., Yan, S. T., Xing, X. H., Sun, X. L., and Jurcik, B., "Progress and Perspectives of Sludge Ozonation as a Powerful Pretreatment Method for Minimization of Excess Sludge Production," Water Res., 43, 1811-1822 (2009). https://doi.org/10.1016/j.watres.2009.02.012
  43. Weemaes, M., Grootaerd, H., Simoens, F., and Verstraete, W., "Anaerobic Digestion of Ozonized Biosolids," Water Res., 34, 2330-2336 (2000). https://doi.org/10.1016/S0043-1354(99)00373-5
  44. Yeom, I. T., Lee, K. R., Lee, Y. H., Ahn, K. H., and Lee, S. H., "Effects of Ozone Treatment on the Biodegradability of Sludge from Municipal Wastewater Treatment Plants," Water Sci. Technol., 46(4-5), 421-425 (2002).
  45. Goel, R., Tokutomi, T., Yasui, H., and Noike, T., "Optimal Process Configuration for Anaerobic Digestion with Ozonation," Water Sci. Technol., 48(4), 85-96 (2003).
  46. Battimelli, A., Millet, C., Delgenes, J. P., and Moletta, R., "Anaerobic Digestion of Waste Activated Sludge Combined with Ozone Post-treatment and Recycling," Water Sci. Technol., 48(4), 61-68 (2003).
  47. Bougrier, C., Battimelli, A., Delgenes, J. P., and Carrere, H., "Combined Ozone Pretreatment and Anaerobic Digestion for the Reduction of Biological Sludge Production in Wastewater Treatment," Ozone-Sci. Eng., 29, 201-206 (2007). https://doi.org/10.1080/01919510701296754
  48. Rivero, J. A. C., Madhavan, N., Suidan, M. T., Ginestet, P., and Audic, J. M., "Enhancement of Anaerobic Digestion of Excess Municipal Sludge with Thermal and/or Oxidative Treatment," J. Environ. Eng. ASCE, 132, 638-644 (2006). https://doi.org/10.1061/(ASCE)0733-9372(2006)132:6(638)
  49. Song, J. J., Takeda, N., and Hiraoka, M., "Anaerobic Treatment of Sewage Treated by Catalytic Wet Oxidation Process in Upflow Anaerobic Blanket Reactors," Water Sci. Technol., 26(3-4), 867-875 (1992). https://doi.org/10.1021/es00029a903
  50. Barlindhaug, J., and Odegaard, H., "Thermal Hydrolysate as a Carbon Source for Denitrification," Water Sci Technol., 33, 99-108 (1996).
  51. Gavala, H., Yenal, U., Skiadas, I., Westermann, P., and Ahring, B., "Mesophilic and Thermophilic Anaerobic Digestion of Primary and Secondary Sludge. Effect of Pre-treatment at Elevated Temperature," Water Res., 37, 4561-4572 (2003). https://doi.org/10.1016/S0043-1354(03)00401-9
  52. Ferrer, I., Climent, M., Baeza, M. M., Artola, A., Vazquez, F., and Font, X., "Effect of Sludge Pretreatment on Thermophilic Anaerobic Digestion," Proceedings of the IWA Specialised Conference on Sustainable Sludge Management: Stateof- the-art, Challenges and Perspectives, May 29-31, Moscow, Russia, (2006).
  53. Valo, A., Carrere, H., and Delgene, J., "Thermal, Chemical and Thermo-chemical Pretreatment of Waste Activated Sludge for Anaerobic Digestion," J. Chem. Technol. Biotechnol., 79, 1197-1203 (2004). https://doi.org/10.1002/jctb.1106
  54. Panter, K., and Kleiven, H., "Ten Years Experience of Full Scale Thermal Hydrolysis Projects," 10th European Biosolids and Biowastes Conference, Wakefield, UK, (2005).
  55. http://www.veoliawaterst.com/biothelys/en/
  56. http://www.veoliawaterst.com/exelys/en/
  57. Evans, T. D., "Independent review of retrofitting Cambi to MAD," Water Environment Federation 17th Annual Residuals & Biosolids Conference, Feb. 19-22, Baltimore MD, (2003).
  58. Chu, C. P., Chang, B. V., Liao, G. S., Jean, D. S., and Lee, D. J., "Observations on Changes in Ultrasonically Treated Waste Activated Sludge," Water Res., 35, 1038-1046 (2001). https://doi.org/10.1016/S0043-1354(00)00338-9
  59. Laborde, J. L., Bouyer, C., Caltagirone, J. P., and Gerard, A., "Acoustic Bubble Cavitation at Low Frequencies," Ultrason., 36, 589-594 (1998). https://doi.org/10.1016/S0041-624X(97)00105-4
  60. Save, S., Pandit, A., and Joshi, J., "Microbial Cell Disruption: Role of Cavitation," Chem. Eng. J. Biochem. Eng. J., 55, B67-B72 (1994). https://doi.org/10.1016/0923-0467(94)06062-2
  61. Shirgaonkar, I. Z., and Pandit, A. B., "Sonophotochemical Destruction of Aqueous Solution of 2, 4, 6-Trichlorophenol," Ultrason. Sonochem., 5, 53-61 (1998). https://doi.org/10.1016/S1350-4177(98)00013-3
  62. Balasundaram, B., and Pandit, A., "Selective Release of Invertase by Hydrodynamic Cavitation," Biochem. Eng. J., 8, 251-256 (2001). https://doi.org/10.1016/S1369-703X(01)00114-0
  63. Gogate, P. R., and Kabadi, A. M., "A Review of Applications of Cavitation in Biochemical Engineering/Biotechnology," Biochem. Eng. J., 44, 60-72 (2009). https://doi.org/10.1016/j.bej.2008.10.006
  64. Machnicka, A., Grubel, K., and Suschka, J., "The Use of Hydrodynamic Disintegration as a Means to Improve Anaerobic Digestion of Activated Sludge," Water SA, 35, 129-132 (2009).
  65. Kim, D. J., and Youn, Y., "Characteristics of Ssludge Hydrolysis by Ultrasound and Thermal Pretreatment at Low Temperature," Korean J. Chem. Eng., 28, 1876-1881 (2011). https://doi.org/10.1007/s11814-011-0055-z
  66. Chu, C. P., Lee, D. J., Chang, B. V., You, C. S., and Tay, J. H., "Weak Ultrasonic Pre-treatment on Anaerobic Digestion of Flocculated Activated Biosolids," Water Res., 36, 2681-2688 (2002). https://doi.org/10.1016/S0043-1354(01)00515-2
  67. Suslick, K. S., Ultrasound : Its Chemical, Physical, and Biological Effects, VCH Publishers, New York, 1988.
  68. Tiehm, A., Nickel, K., and Neis, U., "The Use of Ultrasound to Accelerate the Anaerobic Digestion of Sewage Sludge," Water Sci. Technol., 36, 121-128 (1997). https://doi.org/10.1016/S0273-1223(97)00676-8
  69. Timothy, G., and Leighton, M., "What is Ultrasound," Prog. Biophy. Mol. Biol., 93, 3-83 (2007). https://doi.org/10.1016/j.pbiomolbio.2006.07.026
  70. Van Bavel, E., "Effects of Shear Stress on Endothelial Cells: Possible Relevance for Ultrasound Applications," Prog. Biophy. Mol. Biol., 93, 374-383 (2007). https://doi.org/10.1016/j.pbiomolbio.2006.07.017
  71. Bougrier, C., Carrere, H., and Delgenes, J. P., "Solubilisation of Waste-activated Sludge by Ultrasonic Treatment," Chem. Eng. J., 106, 163-169 (2005). https://doi.org/10.1016/j.cej.2004.11.013
  72. Wang, F., Ji, M., and Lu, S., "Influence of Ultrasonic Disintegration on the Dewaterability of Waste Activated Sludge," Environ. Prog., 25, 257-260 (2006). https://doi.org/10.1002/ep.10149
  73. Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyagi, R. D., and Surampalli, R. Y., "Ultrasonic Pretreatment of Sludge: A Review," Ultrason. Sonochem., 18, 1-18 (2011). https://doi.org/10.1016/j.ultsonch.2010.02.014
  74. http://www.ovivowater.com
  75. http://www.sonico.net
  76. Onyeche, T. I., "Economic Benefits of Low Pressure Sludge Homogenization for Wastewater Treatment Plants," IWA Specialist Conferences, Moving forward Wastewater Biosolids Sustainability, Moncton, New Brunswick, Canada, 2007.
  77. http://www.sludgedisintegration.com
  78. http://www.ecosolids.com/
  79. Dohanyos, M., Zabranska, J., and Jenicek, P., "Enhancement of Sludge Anaerobic Digestion by Using of a Special Thickening Centrifuge," Water Sci. Technol., 36, 145-153 (1997). https://doi.org/10.1016/S0273-1223(97)00677-X
  80. Zabranska, J., Dohanyos, M., Jenicek, P., and Kutil, J., "Disintegration of Excess Activated Sludge-Evaluation and Experience of Full-scale Applications," Water Sci. Technol., 53, 229-236 (2006).
  81. http://www.opencell.com
  82. Tchobanoglous, G., Burton, F., and Stensel, H., Metcalf and Eddy Inc. Wastewater Engineering, Treatment and Reuse, Mc-Graw-Hill, New York, 2003, pp. 799-816.
  83. Watts, S., Hamilton, G., and Keller, J., "Two-stage Thermophilic- mesophilic Anaerobic Digestion of Waste Activated Sludge from a Biological Nutrient Removal Plant," Water Sci. Technol., 53, 149-157 (2006).
  84. Muller, J. A., "Pretreatment Processes for the Recycling and Reuse of Sewage Sludge," Water Sci. Technol., 42, 167-174 (2000).
  85. Wang, X., Qiu, Z. F., Lu, S. G., and Ying, W. C., "Characteristics of Organic, Nitrogen and Phosphorus Species Released from Ultrasonic Treatment of Waste Activated Sludge," J. Hazard. Mater., 176, 35-40 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.115
  86. Yin, G. Q., Liao, P. H., and Lo, K. V., "An Ozone/Hydrogen Peroxide/Microwave Enhanced Advanced Oxidation Process for Sewage Sludge Treatment," J. Environ. Sci. Heal. A., 42, 1177-1181 (2007). https://doi.org/10.1080/10934520701418706
  87. Le Corre, K. S., Valsami-Jones, E., Hobbs, P., and Parsons, S. A., "Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review," Crit. Rev. Environ. Sci. Technol., 39, 433-477 (2009). https://doi.org/10.1080/10643380701640573
  88. Suschka, J., Machnicka, A., and Grubel, K., "Surplus Activated Sludge Disintegration for Additional Nutrients Removal," Arch. Environ. Prot., 33, 55-65 (2007).
  89. Marti, N., Ferrer, J., Seco, A., and Bouzas, A., "Optimisation of Sludge Line Management to Enhance Phosphorus Recovery in WWTP," Water Res., 42, 4609-4618 (2008). https://doi.org/10.1016/j.watres.2008.08.012
  90. Marti, N., Pastor, L., Bouzas, A., Ferrer, J., and Seco, A., "Phosphorus Recovery by Struvite Crystallization in WWTPs: Influence of the Sludge Treatment Line Operation," Water Res., 44, 2371-2379 (2010). https://doi.org/10.1016/j.watres.2009.12.043
  91. Zhang, C., and Chen, Y. G., "Simultaneous Nitrogen and Phosphorus Recovery from Sludge-fermentation Liquid Mixture and Application of the Fermentation Liquid to Enhance Municipal Wastewater Biological Nutrient Removal," Environ. Sci. Technol., 43, 6164-6170 (2009). https://doi.org/10.1021/es9005948
  92. Pastor, L., Mangin, D., Ferrer, J., and Seco, A., "Struvite Formation from the Supernatants of an Anaerobic Digestion Pilot Plant," Bioresour. Technol., 101, 118-125 (2010). https://doi.org/10.1016/j.biortech.2009.08.002
  93. Bougrier, C., Delgenes, J. P., and Carrere, H., "Combination of Thermal Treatments and Anaerobic Digestion to Reduce Sewage Sludge Quantity and Improve Biogas Yield," Process Saf. Environ. Protect., 84, 280-284 (2006). https://doi.org/10.1205/psep.05162
  94. Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., and Lee, J., "Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge," J. Biosci. Bioeng., 95, 271-275 (2003). https://doi.org/10.1016/S1389-1723(03)80028-2
  95. Yang, X., Wang, X., and Wang, L., "Transferring of Components and Energy Output in Industrial Sewage Sludge Disposal by Thermal Pretreatment and Two-phase Anaerobic Process," Bioresour. Technol., 101, 2580-2584 (2010). https://doi.org/10.1016/j.biortech.2009.10.055
  96. Muller, J. A., Winter, A., and Strunkmann, G., "Investigation and Assessment of Sludge Pre-treatment Processes," Water Sci. Technol., 49, 97-104 (2004).
  97. Whitlock, D., Sandino, J., Novak, J., Johnson, B., and Fillmore, L. "Evaluation Methology Framework for Processes to Reduce Waste Activated Solids, 2010 WEF Residuals and Biosolids Conference, (2010).
  98. Dhar, B. R, Nakhla, G., and Ray, M. B., "Techno-economic Evaluation of Ultrasound and Thermal Pretreatments for Enhanced Anaerobic Digestion of Municipal Waste Activated Sludge," Waste Manage., 32, 542-549 (2012). https://doi.org/10.1016/j.wasman.2011.10.007
  99. Kalogo, Y., and Monteith, H., "State of Science Report: Energy and Resource Recovery from Sludge," Water Environment Research Foundation, 2008.

Cited by

  1. Studies of Pretreatment Mehtods for Additional Reduction of Sewage Sludge vol.15, pp.10, 2014, https://doi.org/10.14481/jkges.2014.15.10.15
  2. Enhanced methane production and wastewater sludge stabilization of a continuous full scale thermal pretreatment and thermophilic anaerobic digestion vol.245, 2017, https://doi.org/10.1016/j.biortech.2017.08.108
  3. Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells vol.165, 2014, https://doi.org/10.1016/j.biortech.2014.03.018
  4. Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification vol.103, 2015, https://doi.org/10.1016/j.enconman.2015.06.058
  5. Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production vol.113, 2016, https://doi.org/10.1016/j.ibiod.2016.04.011
  6. Treatment of residues of excavated carcasses burials vol.32, pp.3, 2018, https://doi.org/10.11001/jksww.2018.32.3.269
  7. 돼지분뇨 슬러리중의 고형물 농도수준과 분쇄 처리가 메탄 생성에 미치는 효과 vol.23, pp.4, 2015, https://doi.org/10.17137/korrae.2015.23.4.074
  8. 에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안 vol.36, pp.1, 2013, https://doi.org/10.15681/kswe.2020.36.1.55