DOI QR코드

DOI QR Code

The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone

  • Kim, Jo-Eun (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Shin, Jae-Myung (Department of Oral and Maxillofacial Surgery, Ilsan Paik Hospital, Inje University College of Medicine) ;
  • Oh, Sung-Ook (A Plus Dental Clinic) ;
  • Yi, Won-Jin (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Heo, Min-Suk (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Sam-Sun (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Choi, Soon-Chul (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Huh, Kyung-Hoe (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2013.06.30
  • Accepted : 2013.08.03
  • Published : 2013.12.31

Abstract

Purpose: This study was performed to analyze human maxillary and mandibular trabecular bone using the data acquired from micro-computed tomography (micro-CT), and to characterize the site-specific microstructures of trabeculae. Materials and Methods: Sixty-nine cylindrical bone specimens were prepared from the mandible and maxilla. They were divided into 5 groups by region: the anterior maxilla, posterior maxilla, anterior mandible, posterior mandible, and mandibular condyle. After the specimens were scanned using a micro-CT system, three-dimensional microstructural parameters such as the percent bone volume, bone specific surface, trabecular thickness, trabecular separation, trabecular number, structure model index, and degrees of anisotropy were analyzed. Results: Among the regions other than the condylar area, the anterior mandibular region showed the highest trabecular thickness and the lowest value for the bone specific surface. On the other hand, the posterior maxilla region showed the lowest trabecular thickness and the highest value for the bone specific surface. The degree of anisotropy was lowest at the anterior mandible. The condyle showed thinner trabeculae with a more anisotropic arrangement than the other mandibular regions. Conclusion: There were microstructural differences between the regions of the maxilla and mandible. These results suggested that different mechanisms of external force might exist at each site.

Keywords

References

  1. Lekholm U, Zarb GA. Patient selection and preparation. In: Brånemark PI, Zarb GA, Albrektsson T. Tissue-integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence; 1985. p. 199-209.
  2. Ribeiro-Rotta RF, Lindh C, Rohlin M. Efficacy of clinical methods to assess jawbone tissue prior to and during endosseous dental implant placement: a systematic literature review. Int J Oral Maxillofac Implants 2007; 22: 289-300.
  3. Pothuaud L, Van Rietbergen B, Mosekilde L, Beuf O, Levitz P, Benhamou CL, et al. Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone. J Biomech 2002; 35: 1091-9. https://doi.org/10.1016/S0021-9290(02)00060-X
  4. Thomsen JS, Ebbesen EN, Mosekilde L. Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone 1998; 22: 153-63. https://doi.org/10.1016/S8756-3282(97)00235-4
  5. Borah B, Dufresne TE, Cockman MD, Gross GJ, Sod EW, Myers WR, et al. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling. J Bone Miner Res 2000; 15: 1786-97. https://doi.org/10.1359/jbmr.2000.15.9.1786
  6. Bassi F, Procchio M, Fava C, Schierano G, Preti G. Bone density in human dentate and edentulous mandibles using computed tomography. Clin Oral Implants Res 1999; 10: 356-61. https://doi.org/10.1034/j.1600-0501.1999.100503.x
  7. Norton MR, Gamble C. Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 2001; 12: 79-84. https://doi.org/10.1034/j.1600-0501.2001.012001079.x
  8. Weinstein RS, Hutson MS. Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging. Bone 1987; 8: 137-42. https://doi.org/10.1016/8756-3282(87)90012-3
  9. Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor - a new parameter for simple quantification of bone microarchitecture. Bone 1992; 13: 327-30. https://doi.org/10.1016/8756-3282(92)90078-B
  10. Fanuscu MI, Chang TL. Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible. Clin Oral Implants Res 2004; 15: 213-8. https://doi.org/10.1111/j.1600-0501.2004.00969.x
  11. Bryant SR. The effects of age, jaw site, and bone condition on oral implant outcomes. Int J Prosthodont 1998; 11: 470-90.
  12. Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 1999; 57: 700-8. https://doi.org/10.1016/S0278-2391(99)90437-8
  13. Ulm CW, Kneissel M, Hahn M, Solar P, Matejka M, Donath K. Characteristics of the cancellous bone of edentulous mandibles. Clin Oral Implants Res 1997; 8: 125-30. https://doi.org/10.1034/j.1600-0501.1997.080207.x
  14. Yi WJ, Heo MS, Lee SS, Choi SC, Huh KH. Comparison of trabecular bone anisotropies based on fractal dimensions and mean intercept length determined by principal axes of inertia. Med Biol Eng Comput 2007; 45: 357-64. https://doi.org/10.1007/s11517-006-0152-z
  15. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999; 25: 55-60. https://doi.org/10.1016/S8756-3282(99)00098-8
  16. Jensen O. Site classification for the osseointegrated implant. J Prosthet Dent 1989; 61: 228-34. https://doi.org/10.1016/0022-3913(89)90380-6
  17. Friberg B, Sennerby L, Roos J, Lekholm U. Identification of bone quality in conjunction with insertion of titanium implants. A pilot study in jaw autopsy specimens. Clin Oral Implants Res 1995; 6: 213-9. https://doi.org/10.1034/j.1600-0501.1995.060403.x
  18. Riggs BL, Hodgson SF, O'Fallon WM, Chao EY, Wahner HW, Muhs JM, et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990; 322: 802-9. https://doi.org/10.1056/NEJM199003223221203
  19. Koh KJ, Park HN, Kim KA. Prediction of age-related osteoporosis using fractal analysis on panoramic radiographs. Imaging Sci Dent 2012; 42: 231-5. https://doi.org/10.5624/isd.2012.42.4.231
  20. Amer ME, Heo MS, Brooks SL, Benavides E. Anatomical variations of trabecular bone structure in intraoral radiographs using fractal and particles count analyses. Imaging Sci Dent 2012; 42: 5-12. https://doi.org/10.5624/isd.2012.42.1.5
  21. Giesen EB, van Eijden TM. The three-dimensional cancellous bone architecture of the human mandibular condyle. J Dent Res 2000; 79: 957-63. https://doi.org/10.1177/00220345000790041101
  22. Giesen EB, Ding M, Dalstra M, van Eijden TM. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech 2001; 34: 799-803. https://doi.org/10.1016/S0021-9290(01)00030-6
  23. van Eijden TM, van der Helm PN, van Ruijven LJ, Mulder L. Structural and mechanical properties of mandibular condylar bone. J Dent Res 2006; 85: 33-7. https://doi.org/10.1177/154405910608500105
  24. van Ruijven LJ, Giesen EB, van Eijden TM. Mechanical significance of the trabecular microstructure of the human mandibular condyle. J Dent Res 2002; 81: 706-10. https://doi.org/10.1177/154405910208101010
  25. Moon HS, Won YY, Kim KD, Ruprecht A, Kim HJ, Kook HK, et al. The three-dimensional microstructure of the trabecular bone in the mandible. Surg Radiol Anat 2004; 26: 466-73. https://doi.org/10.1007/s00276-004-0247-x

Cited by

  1. 3D Architecture of Trabecular Bone in the Pig Mandible and Femur: Inter-Trabecular Angle Distributions vol.4, pp.None, 2013, https://doi.org/10.3389/fmats.2017.00029
  2. Cuttlebone as a Marine-Derived Material for Preparing Bone Grafts vol.20, pp.3, 2013, https://doi.org/10.1007/s10126-018-9816-6
  3. Apical root displacement is a critical risk factor for apical root resorption after orthodontic treatment vol.88, pp.6, 2013, https://doi.org/10.2319/111417-777.1
  4. Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens vol.29, pp.6, 2013, https://doi.org/10.1097/scs.0000000000004586
  5. Mechanical adaptation of trabecular bone morphology in the mammalian mandible vol.8, pp.None, 2013, https://doi.org/10.1038/s41598-018-25597-0
  6. Site-specific and time-course changes of postmenopausal osteoporosis in rat mandible: comparative study with femur vol.9, pp.1, 2013, https://doi.org/10.1038/s41598-019-50554-w
  7. Relationship between trabecular bone architecture and early dental implant failure in the posterior region of the mandible vol.31, pp.2, 2013, https://doi.org/10.1111/clr.13551
  8. Alternative cone-beam CT method for the analysis of mandibular condylar bone in patients with degenerative joint disease vol.36, pp.2, 2013, https://doi.org/10.1007/s11282-019-00395-0
  9. Distribution of mandibular trabeculae bone volume fraction in relation to different MOP intervals for accelerating orthodontic tooth movement: vol.90, pp.6, 2013, https://doi.org/10.2319/032820-227.1
  10. Analysis of mandible trabecular structure using digital periapical radiographs to assess low bone quality in postmenopausal women vol.33, pp.8, 2013, https://doi.org/10.1016/j.sdentj.2021.07.003
  11. Evaluation of different grafting materials for alveolar cleft repair in the context of orthodontic tooth movement in rats vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-93033-x
  12. Regional differences in microarchitecture and mineralization of the atrophic edentulous mandible: A microcomputed tomography study vol.133, pp.None, 2013, https://doi.org/10.1016/j.archoralbio.2021.105302