DOI QR코드

DOI QR Code

Differential Expression of Multiple Connexins in Rat Corpus and Cauda Epididymis at Various Postnatal Stages

  • Lee, Ki-Ho (Department of Biochemistry and Molecular Biology, College of Medicine, Eulji University)
  • Received : 2013.10.24
  • Accepted : 2013.12.20
  • Published : 2013.12.31

Abstract

Direct cell-cell communication via the transfer of small molecules between neighboring cells in tissue is accomplished by gap junctions composed of various connexins (Cxs). Proper postnatal development of the epididymis is important for acquisition of male reproduction. The epididymal epithelium is composed of several cell types, and some of these cells are connected by gap junctions. The present study was conducted to determine the presence of Cx transcripts in the corpus and cauda epididymis. In addition, transcriptional changes of Cxs expressed during different postnatal stages were examined by real-time PCR analysis. In both epididymal regions, the same nine Cx transcripts of thirteen Cxs tested were detected. In the corpus epididymis, the highest levels of Cxs31.1 and 37 transcripts were observed at 45 days of age, and amounts of Cxs26, 30.3, and 32 transcripts increased with age and subsequently decreased in the elderly. Expression of Cx31 was greatly increased in the adult and elder stages, while Cxs40, 43, and 45 were abundant in the early postnatal stages. In the cauda epididymis, expression of Cxs26, 30.3, 31.1, 37, and 40 reached the highest levels at 5 months of age. The levels of Cxs31 and 32 mRNAs fluctuated throughout the postnatal period. The amounts of Cxs43 and 45 transcripts were more abundant during the late neonatal and prepubertal ages than later ages. These findings suggest that regional specification of the epididymis is partly regulated by differential expression of Cx genes during the postnatal developmental period.

Keywords

References

  1. Arroteia, K. F., Garcia, P. V., Barbieri, M. F., Justino, M. L. and Pereira, L. A. V. 2012. The epididymis: embryology, structure, function and its role in fertilization and infertility. In: Embryology- Updates and Highlights on Classic Topics. (Ed: L. A. V. Pereira) In Tech. Croatia pp.41-66.
  2. Beyer, E. C., Davis, L. M., Saffitz, J. E. and Veenstra, R. D. 1995. Cardiac intercellular communication: consequences of connexin distribution and diversity. Braz. J. Med. Biol. Res. 28:415-425.
  3. Cry, D. G. 2011. Connexins and pannexins: coordinating cellular communication in the testis and epididymis. Spermatogenesis.1:325-338. https://doi.org/10.4161/spmg.1.4.18948
  4. Cry, D. G., Hermo, I. and Laird, D. W. 1996. Immunocytochemical localization and regulation of connexin43 in the adult rat epididymis. Endocrinology. 137:1474-1484. https://doi.org/10.1210/endo.137.4.8625926
  5. Dube, E., Dufresne, J., Chan, P. T. and Cyr, D. G. 2012. Epidermal growth factor regulates connexin 43 in the human epididymis: role of gap junctions in azoospermia. Hum. Reprod. 27:2285-2296. https://doi.org/10.1093/humrep/des164
  6. Dufresne, J., Finnson, K. W., Gregory, M. and Cyr, D. G. 2003. Expression of multiple connexins in the rat epididymis indicates a complex regulation of gap junctional communication. Am. J. Physiol. Cell. Physiol. 284:C33-C43. https://doi.org/10.1152/ajpcell.00111.2002
  7. Goldberg, G. S., Valiunas, V. and Brink, P. R. 2004. Selective permeability of gap junction channels. Biochim. Biophys. Acta. 1662:96-101. https://doi.org/10.1016/j.bbamem.2003.11.022
  8. Han, S.-Y. and Lee, K.-H. 2013. The expression patterns of connexin isoforms in the rat caput epididymis during postnatal development. J. Ani. Sci. Tech. 55:249-255. https://doi.org/10.5187/JAST.2013.55.4.249
  9. Hess, R. A., Fernandes, S. A. F., Gomes, G. R. O., Oliveira, C. A., Lazari, M. F. M. and Porto, C. S. 2011. Estrogen and its receptors in efferent ductules and epididymis. J. Androl. 32:600-613. https://doi.org/10.2164/jandrol.110.012872
  10. Huynh, H. T., Alpert, L., Laird, D. W., Batist, G., Chalifour, L. and Alaoui-Jamali, M. A. 2001. Regulation of the gap junction connexin 43 gene by androgens in the prostate. J. Mol. Endocrinol. 26:1-10. https://doi.org/10.1677/jme.0.0260001
  11. Juneja, S. C. 2003. mRNA expression pattern of multiple members of connexin gene family in normal and abnormal fetal gonads in mouse. Indian J. Physiol. Pharmacol. 47:147-156.
  12. Lydka, M., Kopera-Sobota, I., Kotula-Balak, M., Chojnacka, K., Zak, D. and Bilinska, B. 2011. Morphological and functional alterations in adult boar epididymis: Effects of prenatal and postnatal administration of flutamide. Acta Vet. Scand. 53:12. https://doi.org/10.1186/1751-0147-53-12
  13. Meda, P., Pepper, M. S., Traub, O., Willecke, K., Gros, D., Beyer, E., Nicholson, B., Paul, D. and Orci, L. 1993. Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinology. 133:2371-2378. https://doi.org/10.1210/endo.133.5.8404689
  14. Mehta, P. P., Perez-Stable, C., Nadji, M., Mian, M., Asotra, K. and Roos, B. A. 1999. Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev. Genet. 24:91-110. https://doi.org/10.1002/(SICI)1520-6408(1999)24:1/2<91::AID-DVG10>3.0.CO;2-#
  15. Meşe, G., Richard, G. and White, T. W. 2007. Gap junctions: basic structure and function. J. Invest. Dermatol. 127:2516-2524. https://doi.org/10.1038/sj.jid.5700770
  16. Plum, A., Hallas, G., Magin, T., Dombrowski, F., Hagendorff, A., Schumacher, B., Wolpert, C., Kim, J., Lamers, W. H., Evert, M., Meda, P., Traub, O. and Wilecke, K. 2000. Unique and shared functions of different connexins in mouse. Curr. Biol. 10:1083-1091. https://doi.org/10.1016/S0960-9822(00)00690-4
  17. Pointis, G., Fiorini, C., Defamie, N. and Segretain, D. 2005. Gap junctional communication in the male reproductive system. Biochim. Biophys. Acta. 1719:102-116. https://doi.org/10.1016/j.bbamem.2005.09.017
  18. Pointis, G., Gileron, J., Carette, D. and Segretain, D. 2010. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365:1607-1620. https://doi.org/10.1098/rstb.2009.0114
  19. Prinsac, G. S., Birch, L., Habermann, H., Chang, W. Y., Tebeau, C., Putz, O. and Bieberich, C. 2001. Influence of neonatal estrogens on rat prostate development. Reprod. Fertil. Dev. 13:241-252. https://doi.org/10.1071/RD00107
  20. Robaire, B. and Hermo, L. 1988. Efferent ducts, epididymis and vas deferens: structure, functions and their regulation. In: The Physiologyof Reproduction. (Eds: E. Knobil and J. Neil) Raven Press. New York pp.999-1080.
  21. Robaire, B., Hinton, B. T. and Orgebin-Crist, M. C. 2006. The epididymis. In: The Physiology of Reproduction. (Eds: E. Knobil and J. Neil) Elsevier. New York pp.1071-1148.
  22. Segretain, D. and Falk, M. M. 2004. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim. Biophys. Acta. 1662:3-21. https://doi.org/10.1016/j.bbamem.2004.01.007
  23. Seo, H. -J., Seon, C. -W., Choi, I., Cheon, Y. -P., Cheon, T. -H. and Lee, K. -H. 2010. Expressional profiling of connexin isoforms in the initial segment of the male reproductive tract during postnatal development. Reprod. Dev. Biol. 34:103-109.
  24. St-Pierre, N., Dufresne, J., Rooney, A. A. and Cyr, D. G. 2003. Neonatal hypothyroidism alters the localization of gapjunctional protein connexin 43 in the testis and messenger RNA levels in the epididymis of the rat. Biol. Reprod. 68:1232-1240. https://doi.org/10.1095/biolreprod.102.010504
  25. Sullivan, R. 2004. Male fertility markers, myth or reality. Ani. Reprod. Sci. 82-83:341-347. https://doi.org/10.1016/j.anireprosci.2004.05.007
  26. Tomsig, J. L. and Turner, T. T. 2006. Growth factors and the epididymis. J. Androl. 27:348-357. https://doi.org/10.2164/jandrol.05182
  27. Yamashita, S. 2004. Localization of estrogen and androgen receptors in male reproductive tissues of mice and rats. Anat. Rec. 279A:768-778. https://doi.org/10.1002/ar.a.20061
  28. Yu, Z., Guo, R., Ge, Y., Ma, J., Guan, J., Li, S., Sun, X., Xue, S. and Han, D. 2003. Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biol. Reprod. 69:34-47.

Cited by

  1. Expressional Modulation of Connexin Isoforms in the Initial Segment of Male Rat treated with Estradiol Benzoate or Flutamide vol.18, pp.4, 2014, https://doi.org/10.12717/DR.2014.18.4.293
  2. Exogenous Exposure to Estradiol Benzoate or Flutamide at the Weaning Age Alters Expression of Connexin Isoforms in the Initial Segment of Male Rat vol.19, pp.1, 2015, https://doi.org/10.12717/DR.2015.19.1.043
  3. Modification of Gene Expression of Connexins in the Rat Corpus Epididymis by Estradiol Benzoate or Flutamide Exposure at the Early Neonatal Age vol.19, pp.2, 2015, https://doi.org/10.12717/DR.2015.19.2.069