DOI QR코드

DOI QR Code

Strength Prediction of Mixing Condition and Curing Time Using Cement-Admixed Marine Clay

해성점토를 이용한 시멘트 혼합토의 배합조건 및 재령일별 강도 예측

  • 전제성 (인덕대학교 건설정보공학과) ;
  • 박민철 (서울시립대학교 대학원 토목공학과) ;
  • 이송 (서울시립대학교 토목공학과)
  • Received : 2013.08.07
  • Accepted : 2013.10.24
  • Published : 2013.12.31

Abstract

Abrams equation could be effectively applied to predict strength of cement-admixed clay and clay-water content to cement content ratio is a fundamental parameter for governing strength. This paper analyses unconfined compression strength varying with $w_c/C$ and curing time using laboratory test results. An attempt is made to identify strength of composite soil of cement and clay according to variation of Abrams coefficients and curing time. The value B, which was considered to be constant value in past researches, needs to be considered as parameter variable with curing time. From Abrams equation a correlation was formed for unconfined compression strength with mixing conditions by $w_c/C$ and curing time as dependent variable. Regression results in this paper could be used to predict strength of cement-admixed clay at various mixing conditions.

기존 연구를 통해 혼합토 강도예측에 있어 Abrams 방정식이 효과적으로 적용될 수 있으며 점토 함수비와 시멘트 함유율의 비는 강도를 결정짓는 가장 주요한 인자임이 제시되었다. 본 연구에서는 혼합토 실내시험을 통해 점토 함수비-시멘트 함유율 및 재령일에 대한 일축압축강도 변화를 분석하였으며, 회귀분석을 통해 각 배합조건별 Abrams 방정식 상의 계수값 변화 및 재령일에 대한 예측식을 제안하였다. 특정 상수값으로 고려되었던 B 계수는 재령일에 따라 변화하는 값으로서, 최종적인 혼합토 강도에 미치는 영향을 분석한 결과 재령일에 따른 변수형태의 고려가 적정한 것으로 나타났다. Abrams 방정식을 통해 $w_c/C$, 재령일을 변수로한 일축압축강도의 조건별 상호 관계식을 구성하였으며, 각 계수별 회귀분석 결과는 특정 배합조건에서의 혼합토 강도값을 이용한 임의 조건에서의 강도예측에 적용될 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Abrams, D. A. (1918), "Design of concrete mixtures", Bulletin, Structural Materials Research Laboratory, Lewis Institute, Chicago, Bulletin 1.
  2. Bergado, D. T., Ruenkrairergsa, T., Taesiri, Y., and Balasubramaniam, A. S. (1999), "Deep soil mixing to reduce embankment settlement", Ground Improvement, Vol.3, No.3, pp.145-162. https://doi.org/10.1680/gi.1999.030402
  3. Broms, B. B. (1986), "Stabilization of soft clay with lime and cement columns in Southeast Asia", Applied Research Project RP10/83, Nanyang Technological Institute, Singapore.
  4. Horpibulsuk, S., Miura, N., and Nagaraj, T. S. (2003), "Assessment of strength development in cement-admixed high water content clays with Abrams's law as a basis", Geotechnique, Vol.53, No.4, pp. 439-444. https://doi.org/10.1680/geot.2003.53.4.439
  5. Kamon, M. and Bergado, D. T. (1991), "Ground improvement techniques", Proc. 9th Asian Regional Conf. on Soil Mechanics and Foundation Engineering, Bangkok, Thailand, Vol.2, pp.526-534.
  6. Kawasaki, T., Niina, A., Saitoh, S., Suzuki, Y., and Honjo, Y. (1981), "Deep mixing method using cement hardening agent", Proc. 10th Int. Conf. Soil Mech. Found. Engng, Stockholm, pp.721-724.
  7. Kim, B. I., Kim, Y. U., and Lee, S. H. (2002), "Unconfined Compressive Strength of Soil Cement Mixed with NSC", Journal of the Korean Geotechnical Society, Vol.18, No.4, pp.159-165 (in Korean).
  8. Kim, S. G., Kim, W. J., Kang, H. B., and Kim, J. R. (2006), "A study of engineering characteristics of soil-cement", KSCE conference 2006, KSCE, Gwangju, pp.4362-4365 (in Korean).
  9. Lee, J. M., Kwon, Y. C., and Lee, H. G. (2009), "Experimental Study on Characteristics of Soil-Cement Include Lean Mixed Concrete for Dredged and Reclaimed Ground", Korean Geo-Environmental Conference, Seoul, Korea, pp.113-116 (in Korean).
  10. Lorenzo, G. A., and Bergado, D. T. (2004), "Fundamental Parameters of Cement-Admixed Clay-New Approach", Journal of Geotechnical and Geoenvironmental Engineering, Vol.130, No.10, pp.1042-1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042)
  11. Mitchell, J. K., T. S. Veng, and C. L. Monismith (1974), "Behavior of Stabilized Soils under Repeated Loading. Report 5: Performance Evaluation of Cement-Stabilized Soil Layers and Its Relationship to Pavement Design", Department of Civil Engineering, University of California, Berkeley, California.
  12. Miura, N., Horpibulsok, S., and Nagaraj, T. S. (2001), "Engineering behavior of cement stabilized clay at high water content", Soils and Foundations, Vol.41, No.5, pp.33-45. https://doi.org/10.3208/sandf.41.5_33
  13. Nagaraj, T. S. and Miura, N. (1996), "Induced cementation of soft ground - A parametric assessment", Proc. Int. Symp. on Lowland Technology, Saga Univ., Japan, pp.85-97.
  14. Uddin, K. (1994), Strength and deformation behaviour of cement treated Bangkok clay. Doctoral thesis, Asian Institute of Technology, Bangkok, Thailand.
  15. Uddin, K., Balasubramaniam, A. S., and Bergado, D. T. (1997), "Engineering behavior of cement-treated Bangkok soft clay", Geotech. Eng., Vol.28, No.1, pp.89-119.
  16. Watabe, Y., Tsuchida, T., Furuno, T., and Yuasa, H. (2000),. "Mechanical characteristics of a cement treated dredge soil utilized for waste reclamation landfill", Proc. Coastal geotechnical engineering in practice, pp.739-745.
  17. Yamadera, A., T. S. Nagaraj, and N. Miura (1997), "Prediction of strength development in cement stabilized marine clay", Short Course on Improvement of Soil Ground, Analysis and Current Research, Asian Institute of Technology, Bangkok, Thailand, pp.141-153.

Cited by

  1. 시멘트 혼합토 및 복합지반의 강도, 변형 특성 및 수치해석 vol.15, pp.8, 2013, https://doi.org/10.14481/jkges.2014.15.8.51