DOI QR코드

DOI QR Code

Effect of Waste Cooking Oil on Durability of High Volume Mineral Admixture Concrete

폐유지류가 혼화재 다량 치환 콘크리트의 내구성에 미치는 영향

  • Received : 2013.10.07
  • Accepted : 2013.12.11
  • Published : 2013.12.30

Abstract

This paper is to investigate an effect of waste cooking oil(WCO) on the engineering properties and durability of high volume admixture concrete. Fly ash with 30% and blast furnace slag with 60% were incorporated in OPC to fabricate high volume admixture concrete with 0.5 of W/B. Emulsified refining cooking oil(ERCO) was made by mixing WCO and emulsifying agent to improve fluidity. ERCO was replaced by cement from 0.25 to 1.0%. As results, the increase of ERCO resulted in decrease of slump and air contents. For compressive strength, the use of ERCO led to decrease the compressive strength at 28 days, while it had similar strength or much higher strength than plain concrete at 180 days. Resistance to carbonation and chloride penetration was improved with the increase of ERCO contents due to decreased pore distribution by saponification between ERCO and concrete, while freeze-thaw resistance was degraded due to air loss.

본 연구에서는 폐유지류가 혼화재 다량 치환콘크리트의 내구성에 미치는 영향을 실험적으로 고찰하고자 한다. 플라이애시 30% 및 고로슬래그 60% 치환한 콘크리트를 대상으로 기초적 물성과, 탄산화저항성, 동결융해저항성, 염해 저항성 및 황산염 침투저항성을 고찰하고 세공구조를 측정하였다. 본 연구에 사용된 폐유지류는 유동성 저하를 방지하기 위하여 유화처리된 폐유지류(ERCO)를 사용하였고, 혼입률은 1.0%까지로 결정하였다. 연구결과에 따르면, 슬럼프 및 공기량은 ERCO 혼입에 따라 감소하는 경향을 보였고, 압축강도는 ERCO혼입에 따라 28일강도는 다소 저하하나 180일 강도의 경우 ERCO혼입과 동등이상의 값을 보였다. 또한, ERCO 혼입에 따른 내염해, 탄산화, 황산염 및 동결융해 저항성에 대하여 분석한 결과로는 염화물 침투저항성 및 탄산화 침투 저항성은 ERCO 혼입률 증가에 따라 저항성이 향상되나, 동결융해 저항성은 저하되는 것으로 나타났다.

Keywords

References

  1. Atis, C. D.,(2003). Accelerated Carbonation and Testing of Concrete with Fly Ash. Construction and Building Materials 17, 147-152. https://doi.org/10.1016/S0950-0618(02)00116-2
  2. Aperador, W., Mejia de Gutierrez, R., Bastidas, D. M. (2009). Steel Corrosion Behaviour in Carbonated Alkali -Activated Slag Concrete. Corrosion Science 51, 2027-2033. https://doi.org/10.1016/j.corsci.2009.05.033
  3. A, Younsi., Ph, Turcry., A, A. M., S, S.,(2012). Accelerated Carbonation of Concrete with High Content of Mineral Addition : Effect of Interaction Between Hydration and Drying. Cement and Concrete Research 43, 25-33.
  4. Han, C. G., Han, M. C., Jeon, C. K., Beak, D. H., Lee, D. G., Han, S. Y.,(2011). Characteristic of Autogenous Shrinkage of High Strength Mortar Using Acceleration Agent and Emulsified Waste oil. Architectural Institute of Korea. 55, 71-72 [in Korean]
  5. Han, C. G., Han, M. C., Jeon, C. K., Woo, D. H., Han, S. Y., Kim, Y. H., (2011). Fundamental Properties of Concrete with the Contents of Durability Improvement Agent. Architectural institute of Korea. 56, 245-246 [in Korean]
  6. Han, C. G., (2012). Quality Control of Concrete. Construction Media Co., Ltd, [in Korean]
  7. Kim S. H., Shin S. T. Seo, C. H., (2000). An Experimental Study on the Carbonation Property of Cement Mortar with Fly Ash. Korean Intellectual Property Office, 20(2), 475-478. [in Korean]
  8. Khunthongkeaw, J., Tangtermsirkul, S., Leelawat, T., (2006) A Study on Carbonation Depth Prediction for Fly Ash Concrete. Construction and Building Materials 20, 744-753. https://doi.org/10.1016/j.conbuildmat.2005.01.052
  9. Shi, H. S., Xu, B. W., Zhou, X. C., (2009). Influence of Mineral Admixtures on Compressive Strength, Gas Permeability and Carbonation of High Performance Concrete. Construction and Building Materials 20, 1980-1985.
  10. VERBECK, G. J., (1958). Carbonation of Hydrated Portland Cement, ASTM. Sp. Tech. Publicn. 205, 17-36.