DOI QR코드

DOI QR Code

Effect of Ferulic Acid Isolated from Cnidium Officinale on the Synthesis of Hyaluronic Acid

천궁으로부터 분리된 ferulic acid의 히알루론산 생성에 미치는 효과

  • 송혜진 ((주) LG생활건강 기술연구원) ;
  • 진무현 ((주) LG생활건강 기술연구원) ;
  • 이상화 ((주) LG생활건강 기술연구원)
  • Received : 2013.06.25
  • Accepted : 2013.07.31
  • Published : 2013.12.31

Abstract

Hyaluronic acid (HA) is one of the major extracellular matrix components in skin. The HA content is reported to decline with age, which may contribute to decrease in skin moisture, wrinkle formation and the decrease in elasticity of the skin. Among the family of HA synthase genes (HAS-1, 2, 3) identified so far, HAS-2 plays crucial roles in the regulation of HA synthesis in human skin fibroblasts. In this study, we elucidated the effects of ferulic acid isolated from Cnidium officinale on HA production. Semi-quantitative RT-PCR and quantitative real-time PCR showed that ferulic acid increased mRNA level of HAS-2 gene and ELISA assay also revealed that ferulic acid increased HA production in human skin fibroblasts. Our study suggests that ferulic acid might prevent age-dependent skin deteriorations such as wrinkles, dryness and elasticity decrease, all of which could be ascribed to the reduction of the HA content in human skin.

히알루론산(HA)은 피부의 세포외기질을 구성하는 주성분이다. 인간의 피부에서 히알루론산의 양은 노화와 함께 감소되는 것으로 보고되어 있으며, 이것은 노화에 따른 피부 수분 감소, 주름 형성 및 피부 탄력 저하에 관여한다고 알려져 있다. 지금까지 밝혀진 히알루론산 합성효소(hyaluronan synthase, HAS)들 중에 HAS-2가 사람의 피부 섬유아세포에서의 히알루론산의 합성을 조절하는 것으로 알려져 있다. 본 연구에서는 천궁으로부터 분리된 ferulic acid가 사람의 피부 유래 섬유아세포에서 히알루론산의 생성에 미치는 효과를 확인하였다. Semi-quantitative RT-PCR과 quantitative real-time PCR을 통해 ferulic acid가 HAS-2의 발현을 증가시키는 것을 확인하였으며 ELISA assay를 통해 ferulic acid가 히알루론산의 생성을 증가시키는 것을 확인하였다. 결론적으로 본 연구를 통해 ferulic acid는 피부 노화에 따른 히알루론산의 감소에 의해 나타나는 건조, 주름 및 탄력 저하와 같은 현상을 개선시킬 가능성을 가진 물질임을 확인하였다.

Keywords

References

  1. J. H. Chung, Photoaging in asians, Photodermatol. photoimmunnol photomed., 19, 109 (2003). https://doi.org/10.1034/j.1600-0781.2003.00027.x
  2. G. J. Fisher, S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, and J. J. Voorhees, Mechanism of photoaging and chronological skin aging, Arch Dermatol., 138, 1462 (2002).
  3. P. U. Giacomoni and G. Rein, Factors of skin ageing share common mechanisms, Biogerontology, 2, 219 (2001). https://doi.org/10.1023/A:1013222629919
  4. M. El-Domyati, S. Attia, F. Saleh, D. Brown, D. E. Birk, F. Gasparro, H. Ahmad, and J. Uitto, Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin, Exp. Dermatol., 11, 398 (2002). https://doi.org/10.1034/j.1600-0625.2002.110502.x
  5. D. A. Carriono, A. Calabro, A. B. Darr, M. T. Dours-Zimmermann, J. D. Sandy, D. R. Zimmermann, J. M. Sorrell, V. C. Hascall, and A. I. Caplan, Age-related differences in human skin proteoglycans, Glycobiology, 21, 257 (2011). https://doi.org/10.1093/glycob/cwq162
  6. S. I. Lamberg and A. C. Stoolmiller, Glycosaminoglycans, J. Invest Dermatol., 63, 433 (1974). https://doi.org/10.1111/1523-1747.ep12680346
  7. I. Ghersetich, T. Lotti, G. Campanile, C. Grappone, and G. Dini, Hyaluronic acid in cutaneous intrinsic aging, Int. J. Dermatol., 33, 119 (1994). https://doi.org/10.1111/j.1365-4362.1994.tb01540.x
  8. S. Sakai, T. Sayo, S. Kodama, and S. Inoue, N-Methyl-L-Serine stimulates hyaluronan production in human skin fibroblasts, Skin Pharmacol. Physiol., 12, 276 (1999). https://doi.org/10.1159/000066253
  9. R. Tammi, J. A. Ripellino, R. U. Margolis, and M. Tammi, Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycans as a specific probe, J. Invest Dermatol., 90, 412 (1988). https://doi.org/10.1111/1523-1747.ep12456530
  10. W. Manuskiatti and H. I. Maibach, Hyaluronic acid and skin: wound healing and aging, Int. J. Dermatol., 35, 539 (1996). https://doi.org/10.1111/j.1365-4362.1996.tb03650.x
  11. K. Fukuda, M. Takayama, M. Ueno, M. Oh, S. Asada, F. Kumano, and S. Tanaka, Hyaluronic acid inhibits interleukin-1-induced superoxide anion in bovine chondrocytes, Inflamm. Res., 46, 114 (1997). https://doi.org/10.1007/s000110050132
  12. R. Fleischmajer, J. S. Perlish, and R. I. Bashey, Human dermal glycosaminoglycans and aging, Biochim. Biophys. Acta., 279, 265 (1972). https://doi.org/10.1016/0304-4165(72)90142-0
  13. M. O. Longas, C. S. Russel, and X. Y. He, Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging, Carbohydr. Res., 159, 127 (1987). https://doi.org/10.1016/S0008-6215(00)90010-7
  14. H. Akiyama, M. Saito, G. Qiu, T. Toida, and T. Imanari, Analytical studies on hyaluronic acid synthesis by normal human epidermal keratinocytes cultured in a serum-free medium, Biol. Pharm Bull., 17, 361 (1994). https://doi.org/10.1248/bpb.17.361
  15. I. A. King, Increased epidermal hyaluronic acid synthesis caused by four retinoids, Br. J. Dermatol., 110, 607 (1984).
  16. R. Tammi, C. T. Jansen, and M. Tammi, Effects of retinoic acid on adult human epidermis in whole skin organ culture, Arch. Dermatol. Res., 277, 276 (1985). https://doi.org/10.1007/BF00509080
  17. R. Tammi, J. A. Ripellino, R. U. Margolis, H. I. Maibach, and M. Tammi, Hyaluronate accumulation in human epidermis treated with retinoic acid in skin organ culture, J. Invest Dermatol., 92, 326 (1989). https://doi.org/10.1111/1523-1747.ep12277125
  18. S. Karvinen, S. Pasonen-Seppanen, J. M. Hyttinen, J. P. Pienimaki, K. Toronen, T. A. Jokela, M. I. Tammi, and R. Tammi, Keratinocyte growth factor stimulates migration and hyaluronan synthesis in the epidermis by activation of keratinocyte hyaluronan synthase 2 and 3, J. Biol. Chem., 278 (49), 49495 (2003). https://doi.org/10.1074/jbc.M310445200
  19. S. Kim, B. Y. Kang, S. Y. Cho, D. S. Sung, H. K. Chang, M. H. Yeom, D. H. Kim, Y. C. Sim, and Y. S. Lee, Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hairless mouse skin, Biochem. Biophys. Res. Comm., 316, 348 (2004). https://doi.org/10.1016/j.bbrc.2004.02.046
  20. T. Sayo, Y. Sugiyama, Y. Takahashi, N. Ozawa, S. Sakai, O. Ishikawa, M. Tamura, and S. Inoue, Hyaluronan synthase 3 regulates hyaluronan synthesis in cultured human keratinocytes, J. Invest Dermatol., 118, 43 (2002). https://doi.org/10.1046/j.0022-202x.2001.01613.x
  21. S. H. Kim, G. W. Nam, H. K. Lee, S. J. Moon, and I. S. Chang, The effects of Musk T on peroxisome proliferator-activated receptor[PPAR]-alpha activation, epidermal skin homeostasis and dermal hyaluronic acid synthesis, Arch. Dermatol. Res., 298, 273 (2006). https://doi.org/10.1007/s00403-006-0684-y
  22. C. B. Lee, Encyclopedia of Korean Plants, 583, Hyang Mun Sa, Seoul, Korea (1985).
  23. H. Mitsuhashi, Illustrated medicinal plants of the world in colour, 358, Hokuryukan, Tokyo, Japan (1998).
  24. S. K. Cho, O. I. Kwon, and C. J. Kim, Anti-inflammatory and Analgesic Activities of the Extracts and Fractions of Cnidii Rhizoma, Kor. J. Pharmacogn., 27, 282 (1996).
  25. S. Y. Lee, M. J. Kim, D. S. Yim, K. J. Chi, and H. S. Kim, Phthalide Content of Cnidium Rhizome, Kor. J. Pharmacogn., 21, 69 (1990).
  26. S. Y. Lee and H. J. Chi, Cheical Components of Korean Chidii Rhizoma, Chemical components of the aireal part, Kor. J. Pharmacogn., 16, 42 (1985).
  27. Q. D. Liang, Y. Gao, H. L. Tan, P. Guo, Y. F. Li, Z. Zhou, W. Tan, Z. C. Ma, B. P. Ma, and S. Q. Wang, Effects of four Si-Wu-Tang's constituents and their combination on irradiated mice, Biol. Pharm. Bull., 29, 1378 (2006). https://doi.org/10.1248/bpb.29.1378
  28. M. Srinivasan, A. R. Sudheer, and V. P. Menon, Ferulic acid: therapeutic potential through its antioxidant property, J. Clin. Biochem. Nutr., 40, 92 (2007). https://doi.org/10.3164/jcbn.40.92
  29. D. K. Maurya, V. P. Salvi, and C. K. Nair, Radiation protection of DNA by ferulic acid under in vitro and in vivo conditions, Mol. Cell. Biochem., 280, 209 (2005). https://doi.org/10.1007/s11010-005-0170-4
  30. M. Srinivasan, A. R. Sudheer, K. R. Pillai, P. R. Kumar, P. R. Sudhakaran, and V. P. Menon, Influence of ferulic acid on gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes, Toxicology, 228, 249 (2006). https://doi.org/10.1016/j.tox.2006.09.004
  31. V. Staniforth, W. C. Huang, K. Aravindaram, and N. S. Yang, Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms, J. Nutr. Biochem., 23, 443 (2012). https://doi.org/10.1016/j.jnutbio.2011.01.009
  32. M. M. Ghaisas, S. B. Kshirsagar, and R. S. Sahane, Evaluation of wound healing activity of ferulic acid in diabetic rats, Int Wound J., doi: 10.1111/j.1742- 481X.2012.01119.x. (2012).
  33. C. M. Lin, J. H. Chiu, I. H. Wu, B. W. Wang, C. M. Pan, and Y. H. Chen, Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1 alpha, J. Nutr. Biochem., 21, 627 (2010). https://doi.org/10.1016/j.jnutbio.2009.04.001

Cited by

  1. An Experimental Study on the Effect of Angelica acutiloba Ethanol Extract on Hyaluronic Acid Synthesis vol.28, pp.1, 2015, https://doi.org/10.6114/jkood.2015.28.1.032
  2. Attenuation of neuroinflammatory responses and behavioral deficits by Ligusticum officinale (Makino) Kitag in stimulated microglia and MPTP-induced mouse model of Parkinson׳s disease vol.164, 2015, https://doi.org/10.1016/j.jep.2014.11.004
  3. The Effects of the Fruits of Foeniculum vulgare on Skin Barrier Function and Hyaluronic Acid Production in HaCaT Keratinocytes vol.25, pp.8, 2015, https://doi.org/10.5352/JLS.2015.25.8.880
  4. Anti-wrinkle effect of berberine by inhibition of MMP-2 and MMP-9 activity in fibroblasts vol.61, pp.1, 2018, https://doi.org/10.3839/jabc.2018.002