DOI QR코드

DOI QR Code

Applications of Isotope Ratio Infrared Spectroscopy (IRIS) to Analysis of Stable Isotopic Compositions of Liquid Water

동위원소비 적외선 분광법(IRIS)을 이용한 물 안정동위원소 분석

  • Jung, Youn-Young (Groundwater department, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Koh, Dong-Chan (Groundwater department, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Jeonghoon (Department of Science Education, Ewha Womans University) ;
  • Ko, Kyung-Seok (Groundwater department, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 정윤영 (한국지질자원연구원 지하수연구실) ;
  • 고동찬 (한국지질자원연구원 지하수연구실) ;
  • 이정훈 (이화여자대학교 과학교육과) ;
  • 고경석 (한국지질자원연구원 지하수연구실)
  • Received : 2013.07.29
  • Accepted : 2013.11.19
  • Published : 2013.12.28

Abstract

Recently, stable isotopes (${\delta}^{18}O$ and ${\delta}D$) of water are increasingly analyzed using laser-based technologies. These methods have advantages over Isotope Ratio Mass Spectrometry (IRMS) in that they can be used for in-situ measurements and require much less maintenance and preparation work. Two types of laser-based methods are currently available, which have different analytical principles; OA-ICOS (off-axis integrated cavity output spectroscopy) and WS-CRDS (wavelength-scanned cavity ring-down spectroscopy). In the WS-CRDS instrument, water is vaporized at controlled environment and transferred to an optical cavity by nitrogen carrier gas, and stable isotopic compositions of water vapor are measured using the degree of absorbance of specific wavelengths and the ratios of attenuation time of the laser intensity with the sensitivity of ppb to tens of ppt level. In this study, we introduce the principle of the WS-CRDS technology and the performance results including stability and comparisons with Isotope Ratio Mass Spectrometry (IRMS) and suggest possible applications of various topics in isotope hydrology.

물의 $^{18}O/^{16}O$$^2H/H$ 조성을 레이저를 이용하여 분석하는 기술은 기존의 IRMS를 이용한 분석방식에 비해 간편한 시료 전처리, 쉬운 장비 유지보수와 현장에서도 응용이 가능하다는 장점을 가지고 있다. 현재 사용되는 레이저 방식을 이용한 물의 안정동위원소 분석은 분석원리에 따라 OA-ICOS(Off-Axis Integrated Cavity Output Spectroscopy)를 이용한 방식과 WS-CRDS(Wavelength-Scanned Cavity Ring-Down Spectroscopy)를 이용한 방식으로 구분된다. WS-CRDS 방식은 기화된 물 시료를 질소 가스를 이용해 광학 공동(optical cavity)로 이동시킨 후 특정 파장에서의 동위원소체가 가지고 있는 흡수도와 레이저를 투과시켜 광학 공동을 투과하여 나오는 레이저 신호의 감쇠시간의 비측정을 통해 수 ppb에서 수십 ppt까지의 감도로 물의 안정동위원소 조성이 측정 가능하다. 이 연구에서는 WS-CRDS 방식의 분석원리와실제 물시료를 활용하여 기기의 안정성과 동위원소비 질량분석기(Isotope Ratio Mass Spectrometry; IRMS) 방법과의 교차분석을 포함한 기기 성능평가 결과를 소개하고 수리학 분야에서 다양한 주제에 대한 적용 가능성을 제시하였다.

Keywords

References

  1. Barthold, F.K., Wu, J., Vache, K.B., Schneider, K., Frede, H.G. and Breuer, L. (2010) Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer-based approaches. Hydrological Processes. v.24, p.2313-2327. https://doi.org/10.1002/hyp.7678
  2. Bear, D.S., Paul, J.B., Gupta, M. and O'Keefe, A. (2002) Sensitive absorption measurements in the nearinfrared region using off-axis integrated-cavity-output spectroscopy. Applied Physics B: Lasers and Optics, v.75, p.261-265. https://doi.org/10.1007/s00340-002-0971-z
  3. Berden, G., Peeters, R. and Meijer, G. (2000) Cavity ringdown spectroscopy: Exerimental schemes and applications. International Reviews in Physical Chemistry, v.19, p.565-607. https://doi.org/10.1080/014423500750040627
  4. Berman, E.S.F., Gupta, M., Gabrielli, C., Garland, T. and Mc-Donnell, J.J. (2009) High-frequency field deployable isotope analyzer for hydrological applications. Water Resources Research, v.45, W10201.
  5. Bigeleisen, J., Perlman, M.J. and Prosser, H. (1952) Conversion of hydrogenic materials for hydrogen to isotopic analysis. Analytical Chemistry, v.24, p.1356-1357. https://doi.org/10.1021/ac60068a025
  6. Birkel, C., Duun, S.M., Tetzlaff, D. and Soulsby, C. (2010) Assessing the value of high-resolution isotope tracer data in the stepwise development of a lumped conceptual rainfall-runoff model. Hydrological Processes, v.24, p.2335-2348. https://doi.org/10.1002/hyp.7763
  7. Birkel, C., Duun, S.M., Tetzlaff, D. and Soulsby, C. (2011) Using lumped conceptual rainfall-runoff models to simulate daily isotope variability with fractionation in a nested mesoscale catchment. Advances in Water Resources, v.34, p.383-394. https://doi.org/10.1016/j.advwatres.2010.12.006
  8. Brand, W.A., Geilmann, H., Crosson, E.R. and Rella, C.W. (2009) Cavity ring-down spectroscopy versus hightemperature conversion isotope ratio mass spectrometry: a case study on $\delta^{2}H$ and $\delta^{18}O$ of pure water samples and alcohol/water mixture. Rapid Communications in Mass Spectrometry, v.23, p.1879-1884. https://doi.org/10.1002/rcm.4083
  9. Broxton, P.D., Troch, P.A. and Lyon, S.W. (2009) On the role of aspect to quantify water transit times in small mountainous catchments. Water Resources Research. v.45, W08427.
  10. Chesson, L.A., Bowen, G.J. and Ehleringer, J.R. (2010) Analysis of the hydrogen and oxygen stable isotope ratios of beverage waters without prior water extraction using isotope ratio infrared spectroscopy. Rapid Communications in Mass Spectrometry, v.24, p.3205-3213. https://doi.org/10.1002/rcm.4759
  11. Crosson, E.R. (2008) WS-CRDS: Precision trace gas analysis and simplified stable isotope measurements. American Laboratory, v.40, p.37-41.
  12. Clark I. and Fritz, P. (1997) Environmental Isotopes in Hydrogeology. Lewis Publishers, NewYork, 328p.
  13. Epstein, S. and Mayada, T.K. (1953) Variations of O-18 content of waters from natural sources. Geochimica et cosmochimica acta 4.5, p.213-224.
  14. Gehre, M., Hofling, R., Kowski, P. and Strauch, G. (1996) Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Analytical Chemistry, v.68, p.4414-4417. https://doi.org/10.1021/ac9606766
  15. Gupta. P., Noone, D., Galewsky, J., Sweeney, C. and Vaughn, B.H. (2009) Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Communications in Mass Spectrometry, v.23, p.2534-2542. https://doi.org/10.1002/rcm.4100
  16. Hendry M.J. and Wassenaar L.I. (2009) Inferring heterogeneity in aquitards using high-resolution $\delta{D}$ and $\delta^{18}O$ profiles. Ground Water, v.47, p.639-645. https://doi.org/10.1111/j.1745-6584.2009.00564.x
  17. IAEA. (2009) Laser Spectroscopy Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes. Performance Testing and Procedures for Installing and Operating the LGR DT-100 Liquid Water Isotope Analyzer, International Atomic Energy Agency, Vienna, ISSN p.1018-5518.
  18. Kerstel, E. and Gianfrani, L. (2008) Advances in laserbased isotope ratio measurements: Selected applications. Applied Physics B, v.92, p.439-449.
  19. Lis. G., Wassenaar. L.I. and Hendry. M.J. (2008) High- Precision Laser Spectroscopy D/H and 18O/16O Measurements of Microliter natural Water Samples. Analytical Chemistry, v.80, p.287-293. https://doi.org/10.1021/ac701716q
  20. O'Keefe, A. and Deacon, D.A.G. (1988) Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources. Review of Scientific Instruments, v.59, p.2544-2551. https://doi.org/10.1063/1.1139895
  21. O'Keefe, A., Scherer, J.J. and Paul, J.B. (1999) CW integrated cavity output spectroscopy. Chemical Physics Letters, v.307, p.343-349. https://doi.org/10.1016/S0009-2614(99)00547-3
  22. Lee, K.S. and Lee, I. (1996) Discussions about Sample Preparation Techniques for Oxygen and Hydrogen Isotope Analysis. The Korean Society of Economic and Environmental Geology, v.29, p.207-214.
  23. Lyon, S.W., Desilets, S.L.E. and Troch, P.A. (2009) A tale of two isotopes: differences in hydrograph separation for a runoff event when using $\delta{D}$ versus $\delta^{18}O$. Hydrological Processes, v.23, p.2095-2101. https://doi.org/10.1002/hyp.7326
  24. Morrison, J., Brockwell, T., Merren, T., Fourel, F. and Phillips, A.M. (2001) On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples. Analytical Chemistry, v.73, p.3570-3575. https://doi.org/10.1021/ac001447t
  25. Morville, J., Romanini, D., Kachanov, A.A. and Chenevier, M. (2004) Two schemes for trace detection using cavity ringdown spectroscopy. Applied Physics B, v.78, p.465-476.
  26. Moyer, E.J., Sayres, D.S., Engel, G.S., St.Clair, j.M., Keutsch, F.N., Allen, N.T., Kroll, J.H. and Anderson, J.G. (2008) Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy. Applied Physics B, v.92, p.467-474. https://doi.org/10.1007/s00340-008-3137-9
  27. Paul, J.B., Lapson, L. and Anderson, J.G. (2001) Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment. Applied Optics, v.40, p.4904-4910. https://doi.org/10.1364/AO.40.004904
  28. Penna, D., Stenni, B., Sanda, M., Wrede, S., Bogaard, T.A., Gobbi, A., Borga, M., Fischer, B.M.C., Bonazza, M. and Charova, Z. (2010) On the reproducibility and repeatability of laser absorption spectroscopy measurements for $\delta^{2}H$ and $\delta^{18}O$ isotopic analysis. Hydrology and Earth System Sciences Discussions, v.14, p.1551-1566. https://doi.org/10.5194/hess-14-1551-2010
  29. Scherer, J.J., Paul, J.B., O'Keefe, A. and Saykally, R.J. (1997) Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams. Chemical Reviews, v.97, p.25-51. https://doi.org/10.1021/cr930048d
  30. Singleton, G.R., Coplen, T.B., Qi, H. and Lorenz, J.M. (2009) Laser-based stable hydrogen and oxygen analyses: How reliable can measurement results be?. EGU. General Assembly April 19-24.
  31. Socki, R.A., Romanek, C.S. and Gibson, E.K. (1999) Online technique for measuring stable oxygen and hydrogen isotopes from microliter quantities of water. Analytical Chemistry, v.71, p.2250-2253. https://doi.org/10.1021/ac981140i
  32. Wahl, E.H., Fidric, B., Rella C.H., Koulikov, S., Kharlamov, B., Tan, S., Kachanov, A.A., Richman, B.A., Crosson, E.R., Paldus, B.A., Kalaskar, S. and Bowling, D.R. (2006) Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of $^{13}C/^{12}C$ in carbon dioxide. Isotopes in environmental and health studies. v.42, p.21-35. https://doi.org/10.1080/10256010500502934
  33. Wassenaar, L.I., M.J. Hendry, V.L. Chostner, and G.P. Lis. (2008) High resolution pore water $\delta^{2}H$ and $\delta^{18}O$ measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy. Environmental Science and Technology. v.42, p.9262-9267. https://doi.org/10.1021/es802065s
  34. Wassenaar, L.I., Van Wilgenburg, S.L., Larson, K. and Hobson, K.A. (2009) A groundwater isoscape ($\delta{D}$, $\delta^{18}O$) for Mexico. Journal of Geochemical Exploration. v.102, p.123-136. https://doi.org/10.1016/j.gexplo.2009.01.001
  35. West, A.G., Goldsmith, G.R., Brooks, P.D. and Dawson, T.E. (2010) Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Communications in Mass Spectrometry, v.24, p.1948-1954. https://doi.org/10.1002/rcm.4597
  36. Zhao, L., Xiao, H., Zhou, J., Wang, L., Cheng, G., Zhou, M., Yin, L. and McCabe, M.F. (2011) Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Communications in Mass Spectrometry, v.25, p.3071-3082. https://doi.org/10.1002/rcm.5204

Cited by

  1. Groundwater-Stream Water Interaction Induced by Water Curtain Cultivation Activity in Sangdae-ri Area of Cheongju, Korea vol.49, pp.2, 2016, https://doi.org/10.9719/EEG.2016.49.2.105
  2. Influence of pre-event water on streamflow in a granitic watershed using hydrograph separation vol.76, pp.2, 2017, https://doi.org/10.1007/s12665-017-6402-6
  3. Applications of Cryogenic Method to Water Vapor Sampling from Ambient Air for Isotopes Analysis vol.38, pp.4, 2016, https://doi.org/10.4217/OPR.2016.38.4.339
  4. A study on isotopic exchange between ice and meltwater using a melting experiment and 1-D model vol.53, pp.6, 2017, https://doi.org/10.14770/jgsk.2017.53.6.773
  5. A Study of Stable Isotopic Variations of Antarctic Snow by Albedo Differences vol.37, pp.2, 2015, https://doi.org/10.4217/OPR.2015.37.2.141
  6. A Review on the Application of Stable Water Vapor Isotope Data to the Water Cycle Interpretation vol.20, pp.3, 2015, https://doi.org/10.7857/JSGE.2015.20.3.034
  7. A High-resolution Study of Isotopic Compositions of Precipitation vol.48, pp.5, 2015, https://doi.org/10.9719/EEG.2015.48.5.371
  8. The 222Rn, 3H and stable isotopes as tracers of groundwater–surface water interactions in a stream basin vol.304, pp.1, 2015, https://doi.org/10.1007/s10967-014-3598-8
  9. A Study on Isotopic Fractionation between Ice and Meltwater by a Melting Experiment vol.37, pp.4, 2015, https://doi.org/10.4217/OPR.2015.37.4.327
  10. Old Water Contributions to a Granitic Watershed, Dorim-cheon, Seoul vol.20, pp.5, 2015, https://doi.org/10.7857/JSGE.2015.20.5.034
  11. A review on hydrograph separation using isotopic tracers vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.339
  12. A preliminary study for blue ice in Victoria Land, East Antarctica vol.53, pp.4, 2017, https://doi.org/10.14770/jgsk.2017.53.4.567