DOI QR코드

DOI QR Code

Effect of Silk Fibroin Hydrolysate on the Apoptosis of MCF-7 human Breast Cancer Cells

  • Chon, Jeong-Woo (Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Jo, Yoo-Young (Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Heui-Sam (Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Yeo, Joo-Hong (Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • Received : 2013.10.07
  • Accepted : 2013.11.10
  • Published : 2013.12.31

Abstract

Breast cancer is one of the most common cancers among women worldwide. Recently anticancer agents have been developed using natural substances. To evaluate the anticancer effect of hydrolysates of silk fibroin (HSF), we investigated the effect of HSF on cell viability and apoptosis of a breast cancer cell line, MCF-7, induced through the mitochondrial pathway. The result showed that HSF decreased cell viability in MCF-7 cells in a dose- and time-dependent manner, resulting in an increase in the sub-G1 phase cell population. HSF increased the level of the pro-apoptotic Bax protein and decreased the levels of the anti-apoptotic Bcl-2 protein. In addition, HSF induced apoptosis in MCF-7 cells through a mitochondria-dependent pathway by increasing levels of cytochtome c, and cleavage of PARP. Taken together, these findings suggest that HSF inhibits the proliferation of MCF-7 breast cancer cells through a mitochondria and caspase dependent apoptotic pathway.

Keywords

References

  1. Acharya C, Ghosh SK, Kundu SC (2008) Silk fibroin protein from mulberry and non-mulberry silkworms: Cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion. J Mater Sci Mater Med 19, 2827-2836. https://doi.org/10.1007/s10856-008-3408-3
  2. Anelli TFM, Anelli A, Tran KN, Lebwohl DE, Borgen PI (1994) Tamoxifen administration is associated with a high rate of treatmentlimiting symptoms in male breast cancer patients. Cancer 74, 74-77. https://doi.org/10.1002/1097-0142(19940701)74:1<74::AID-CNCR2820740113>3.0.CO;2-#
  3. Chien S, Wu Y, Chung J, Yang J, Lu H, Tsou M, Wood W, Kuo S, Chen D (2009) Quercetin-induced apoptosis acts through mitochondrialand caspase-3-dependent pathways in human breast cancer MDAMB-231 cells. Human Toxicol 28, 493-503. https://doi.org/10.1177/0960327109107002
  4. Cotter TG (2009) Apoptosis and cancer: The genesis of a research field. Nat Rev Cancer 9, 501-507. https://doi.org/10.1038/nrc2663
  5. Danial NN, Korsmeyer SJ (2004) Cell death: Critical control points. Cell 116, 205-219. https://doi.org/10.1016/S0092-8674(04)00046-7
  6. de Bruin EC, Medema JP (2008) Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 34, 737-749. https://doi.org/10.1016/j.ctrv.2008.07.001
  7. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10, 369-377. https://doi.org/10.1016/S0962-8924(00)01803-1
  8. Donovan M, Cotter TG (2004) Control of mitochondrial integrity by bcl-2 family members and caspase-independent cell death. BBA 1644, 133-147.
  9. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342-348. https://doi.org/10.1038/35077213
  10. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55, 178-194. https://doi.org/10.3322/canjclin.55.3.178
  11. Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M, Sugihara M (1995) New oral dosage form for elderly patients. II. Release behavior of benfotiamine from silk fibroin gel. Chem Pharm Bull 43, 872-876. https://doi.org/10.1248/cpb.43.872
  12. Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 9, 691-704. https://doi.org/10.1023/B:APPT.0000045786.98031.1d
  13. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407, 770-776. https://doi.org/10.1038/35037710
  14. Herceg Z, Wang ZQ (2001) Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res- Fund Mol M 477, 97-110. https://doi.org/10.1016/S0027-5107(01)00111-7
  15. Igney FH, Krammer PH (2002) Death and anti-death: Tumor resistance to apoptosis. Nat Rev Cancer 2, 277-288. https://doi.org/10.1038/nrc776
  16. Jin S, Zhang QY, Kang XM, Wang JX, Zhao WH (2010) Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann Oncol 21, 263-268. https://doi.org/10.1093/annonc/mdp499
  17. Kallio A, Zheng A, Dahllund J, Heiskanen K, Harkonen P (2005) Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis 10, 1395-141. https://doi.org/10.1007/s10495-005-2137-z
  18. Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M (1998) Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem 62, 145-147. https://doi.org/10.1271/bbb.62.145
  19. Kim ED, Bayaraa T, Shin EJ, Hyun CK (2009) Fibroin-derived peptides stimulate glucose transport in normal and insulin-resistant 3T3-L1 adipocytes. Biol Pharm Bull 32, 427-433. https://doi.org/10.1248/bpb.32.427
  20. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: A primary site for bcl-2 regulation of apoptosis. Science 275, 1132-1136. https://doi.org/10.1126/science.275.5303.1132
  21. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87, 99-163. https://doi.org/10.1152/physrev.00013.2006
  22. Kweon HY, Lee K, Park K, Kang S, Kang P, Kim M, Kim K (2012) Cocoon filament quality of a special silkworm variety, GoldenSilk. Int J Ind Entomol 24, 17-21. https://doi.org/10.7852/ijie.2012.24.1.017
  23. Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res 29, 1215-1221. https://doi.org/10.1002/jbm.820291008
  24. Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I (2009) Role of caspases and bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol 47, 1909-1913. https://doi.org/10.1016/j.fct.2009.05.017
  25. Nam MK, Kang KJ (2013) The effect of red cabbage extract on the apoptosis in human breast cancer MDA-MB-231 cells. J Korean Soc Food Sci Nutr 42, 8-16. https://doi.org/10.3746/jkfn.2013.42.1.008
  26. Nishida A, Yamada M, Kanazawa T, Takashima Y, Ouchi K, Okada H (2010) Use of silk protein, sericin, as a sustained-release material in the form of a gel, sponge and film. Chem Pharm Bull 58, 1480-1486. https://doi.org/10.1248/cpb.58.1480
  27. Roh DH, Kang SY, Kim JY, Kwon YB, Kweon HY, Lee KG, Park YH, Baek RM, Heo CY, Choe J, Lee JH (2006) Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J Biomed Mater Res 17, 547-552.
  28. Shim HY, Park JH, Paik HD, Nah SY, Kim D, Han YS (2007) Acacetininduced apoptosis of MCF-7 human breast cancer cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/ JNK1/2-c-jun activation. Mol Cells 24, 95-104.
  29. Sofia S, McCarthy MB, Gronowiza G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54, 139-148. https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  30. Solary E, Dubrez L, Eymin B (1996) The role of apoptosis in the pathogenesis and treatment of diseases. Eur Respir J 9, 1293-1305. https://doi.org/10.1183/09031936.96.09061293
  31. Taraphdar AK, Roy M, Bhattacharya RK (2001) Natural products as inducers of apoptosis: Implication for cancer therapy and prevention. Curr Sci India 80, 1387-1396.
  32. Tsukada M, Freddi G, Minoura N, Allara G (1994) Preparation and application of porous silk fibroin materials. J Appl Polym Sci 54, 507-514. https://doi.org/10.1002/app.1994.070540411
  33. Wang X, Yuan S, Wang J, Lin P, Liu G, Lu Y, Zhang J, Wang W, Wei Y (2006) Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol Appl Pharmacol 215, 168-178. https://doi.org/10.1016/j.taap.2006.02.004
  34. Wang G, Yang H, Li M, Lu S, Chen X, Cai X (2010) The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bonemarrow stromal cells in the healing of a segmental bone defect. J Bone Joint Surg Br 92, 320-325.
  35. Zhang G, Gurtu V, Kain SR, Yan G (1997) Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23, 525-531.
  36. Zhou C, Confalonieri F, Jacquet M, Perasso R, Li Z, Janin J (2001) Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins 44, 119-122. https://doi.org/10.1002/prot.1078
  37. Zhu W, Chen J, Cong X, Hu S, Chen X (2006) Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells 24, 416-425. https://doi.org/10.1634/stemcells.2005-0121
  38. Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92, 57-70. https://doi.org/10.1016/S0163-7258(01)00159-0

Cited by

  1. Anti-apoptotic effects of silk fibroin hydrolysate in RIN5F cell on high glucose condition vol.19, pp.3, 2015, https://doi.org/10.1080/19768354.2015.1042045
  2. Antioxidant activity of silkworm powder treated with protease vol.33, pp.2, 2016, https://doi.org/10.7852/ijie.2016.33.2.78
  3. Effects of silk fibroin hydrolysate on bone metabolism in ovariectomized rats vol.30, pp.1, 2015, https://doi.org/10.7852/ijie.2015.30.1.17