DOI QR코드

DOI QR Code

Collaborative Visualization of Warfare Simulation using a Commercial Game Engine

상업용 게임 엔진을 활용한 전투 시뮬레이션 결과의 협업 가시화

  • 김형기 (카이스트 기계공학과) ;
  • 김정훈 (국방과학연구소 제6기술연구본부) ;
  • 강윤아 (카이스트 기계공학과) ;
  • 신수철 (카이스트 기계공학과) ;
  • 김임규 (카이스트 해양시스템공학과) ;
  • 한순흥 (카이스트 해양시스템공학과)
  • Received : 2013.11.01
  • Accepted : 2013.11.12
  • Published : 2013.12.31

Abstract

The needs for reusable 3D visualization tool has been being raised in various industries. Especially in the defense modeling and simulation (M&S) domain, there are abundant researches about reusable and interoperable visualization system, since it has a critical role to the efficient decision making by offering diverse validation and analyzing processes. To facilitate the effectiveness, states-of-the-arts M&S systems are applying VR (Virtual Reality) or AR (Augmented Reality) technologies. To reduce the work burden authors design a collaborative visualization environment based on a commercial game engine Unity3D. We define the requirements of the warfare simulation by analyzing pros and cons of existing tools and engines such as SIMDIS or Vega, and apply functionalities of the commercial game engine to satisfy the requirements. A prototype has been implemented as the collaborative visualization environment of iCAVE at KAIST, which is a facility for immersive virtual environment. The facility is intraoperative with smart devices.

재사용 가능한 3차원 가시화 도구의 개발에 대한 요구는 다양한 분야에서 제기되어 왔다. 특히 국방 모델링 및 시뮬레이션 분야에서는 시뮬레이션 결과의 다각적인 검증 및 분석을 통한 효율적인 의사결정을 수행하기 위해 이러한 요구사항에 맞는 시스템들이 개발되어 왔다. 또한 최근에는 이러한 효과를 극대화하기 위하여 VR 및 AR 기술을 적극적으로 활용하는 사례가 늘어나는 추세이다. 본 연구에서는 상업용 게임 엔진을 통한 전투 시뮬레이션 결과의 협업 가시화 도구의 설계 방안에 대해 소개한다. 이를 위해 SIMDIS나 Vega Prime과 같은 기존 도구 및 엔진의 장/단점 분석을 통해 본 연구에서 목표로 하는 협업 가시화 환경의 요구사항을 정의하였고, 이를 만족하는 시스템 개발을 위해 상업용 게임 엔진을 어떻게 활용하며, 어떤 이점을 갖는지를 제시한다. 구현된 프로토타입 시스템은 KAIST의 몰입형 가상현실 시설인 iCAVE, 그리고 스마트 디바이스들과 연동하여 협업 가시화 환경을 제공한다.

Keywords

References

  1. http://www.3ds.com/ko/products-services/delmia/
  2. https://simdis.nrl.navy.mil/
  3. Hong, J.W., Park, Y.M., Park, S.C. and Kwon, Y.J.(James), "A Technology on the Framework Design of Virtual based on the Synthetic Environment Test for Analyzing Effectiveness of the Weapon Systems of Underwater Engagement Model", Journal of the Korea Society for Simulation, Vol. 19, No. 4, pp. 291-299, 2010.
  4. Cha, M.H., Lee, J.K., Park, S.W., Park, D.Y. and Shin, B.C., "A development of maglev design review system using real-time visualization technology", Proceedings of the Society of CAD/CAM Conference, 2010.
  5. Hang Q., Leiting C. "Real-Time Virtual Military Simulation System", Proceedings of the 2009 First IEEE International Conference on Information Science and Engineering, pp. 1391-1394, 2009.
  6. Wu L., Kang L., "Research and Implementation of Visualization Technology for Virtual Battlefield Environment", International Conference on Audio Language and Image Processing, pp.1040-1045, 2010.
  7. Baki K. Erkan B., "Using Lanchester combat models to aid battlefield visualization", Internaltional Conference on Computer Science and Information Technology, pp.290-292, 2009.
  8. Kim, S.N., Choi, J.I., Kim, C.H. and Lim, C.S., "3D isualization for Situational Awareness of Air Force Operations", Jounal of KIISE, Vol 32., No. 5,6, pp. 314- 323, 2005.
  9. Kim, C.Y., Park, Y.K., Lee, J.K., Kim, M.Y. and Reu, T.K., "A Study of the UML modeling and simulation for an analysis and design of the reconnaissance UAV system". J. of The Korean Society for Aeronautical and Space Sciences, Vol. 36, No. 11, pp. 1112-1120, 2008. https://doi.org/10.5139/JKSAS.2008.36.11.1112
  10. IEEE, "IEEE standard for modeling and simulation (M&S) high level architecture (HLA) - federate interface specification," Std. 1516.1, 2000.
  11. Gang C., Shang X., Guan Q. J. and Quan D., "Scene Simulation Platform Based on Data Fusion of Multiple Format 3D Models", International Conference on Computer Modeling and Simulation, pp.342-346, 2009.
  12. Martin A., "Using the HLA, Physical Modeling and Google Earth for Simulating Air Transport Systems Environmental Impact", Simulation Interoperability Workshop, 2009.
  13. Hwam, W.K., Chung, Y.H., Choi, J.Y. and Park, S.C., "A Study on Implementation of Monitoring System of Distributed Simulation for Underwater Warfare", Journal of the Korea Society for Simulation, Vol. 22, No 2., pp. 73-83, 2013. https://doi.org/10.9709/JKSS.2013.22.2.073
  14. Hur, P.W. and Han, S.H., "Internet-Based Visualization of Underwater Vehicle Simulation using X3D", Proceedings of the 2006 Korea Society for Simulation Conference, pp. 48-58, 2006.
  15. http://www.presagis.com/products_services/products/modelingsimulation/visualization/vega_prime/
  16. http://www.metavr.com/
  17. http://unity3d.com/
  18. Cha, M.H. and Lee, J.K., Hwang, J.S. and Han, S.H., "A VR-based Tile Display System for the Distributed Visualization", Proceedings of the Society of CAD/CAM Conference, pp. 510-519, 2010.
  19. Hong, J.H. and Kim, T.G., "Interoperation between Engineering-and Engagement-level Models for System Effectiveness Analysis", Journal of the Korea Society for Simulation, Vol. 19. No. 4, pp. 319-326, 2010.
  20. http://icad.kaist.ac.kr/
  21. Kim, H.K. and Han, S.H., "Using Commercial Game Engine for the 3D Visualization of te Result in Battle Simulation", Proceedings of the 2006 Korea Society for Simulation Conference, pp. 129-124. 2012.
  22. http://unity3d.com

Cited by

  1. Development of the Visualization Prototype of Radar Rainfall Data Using the Unity 3D Engine vol.18, pp.4, 2015, https://doi.org/10.11108/kagis.2015.18.4.131
  2. A Study on the Construction of the Unity 3D Engine Based on the WebGIS System for the Hydrological and Water Hazard Information Display vol.154, 2016, https://doi.org/10.1016/j.proeng.2016.07.431
  3. A Design of Operational Test & Evaluation System for Weapon Systems thru Process-based Modeling vol.23, pp.4, 2014, https://doi.org/10.9709/JKSS.2014.23.4.211