DOI QR코드

DOI QR Code

Multi-fidelity Modeling and Simulation Methodology to Enhance Simulation Performance of Engineering-level Defense Model

공학급 국방 모델의 시뮬레이션 성능 향상을 위한 다중 충실도 M&S 기법 연구

  • 최선한 (한국과학기술원 전기및전자공학과) ;
  • 서경민 (한국과학기술원 전기및전자공학과) ;
  • 권세중 (한국과학기술원 전기및전자공학과) ;
  • 김탁곤 (한국과학기술원 전기및전자공학과)
  • Received : 2013.11.01
  • Accepted : 2013.11.12
  • Published : 2013.12.31

Abstract

This paper presents multi-fidelity modeling and simulation (M&S) methodology to enhance simulation performance of engineering-level defense models. In this approach, a set of models with varying degrees of fidelity is exercised to reduce computational expense maintaining a similar level of system effectiveness. For multi-fidelity M&S principles, this paper defines model fidelity from two perspectives (i.e., model behavior and execution), and suggests the Fidelity Change Point (FCP) to specify the fidelity conversion. With these concepts, this paper centers on three ideas: 1) two models' structure which are the Behavioral-Fidelity Interchangeable Model (B-FIM) and the Executional-Fidelity Interchangeable Model (E-FIM), 2) modeling formalism, and 3) a simulation algorithm to support them. From an abstract case study regarding a target tracking scenario with the utilization of the proposed method, we can gain interesting experimental results regarding the enhancement of simulation performance. Finally, we expect that this work will serve various M&S-based analysis areas for enhancing simulation performance.

본 논문은 공학급 국방 모델의 시뮬레이션 성능 향상을 위해 다중 충실도(Multi-fidelity) 모델링 시뮬레이션(M&S: Modeling and Simulation) 기법을 제안한다. 제안하는 기법은 다양한 충실도를 지닌 모델을 활용하여 고 충실도 모델의 시뮬레이션과 비교하여 유사한 수준의 시스템 분석 결과를 얻음과 동시에 시뮬레이션 성능 측면에서 이득을 가져오는 방안이다. 다중 충실도 원리를 적용하기 위해 본 논문은 충실도를 모델 동작과 실행 측면으로 세분화하고, 충실도 변환 지점을 FCP (Fidelity Change Point)로 정의한다. 이러한 원리를 바탕으로 본 논문은 다음의 세 가지 쟁점을 다룬다. 먼저, 모델 동작과 실행 측면의 충실도 변환을 위한 모델 구조와 제안하는 모델에 대한 수학적 형식론, 마지막으로 모델 실행을 위한 시뮬레이션 알고리즘을 제안한다. 사례 연구로 어뢰의 표적 추적 시나리오에 대한 기초 실험을 수행하였고, 실험 결과 제안하는 기법을 사용한 경우 기존의 시뮬레이션과 비교하여 최대 4.24배의 시뮬레이션 성능 향상을 보임을 확인하였다. 본 논문에서 제안하는 기법은 M&S 기반의 시스템 분석을 하는 다양한 분야에서 활용될 수 있음을 기대한다.

Keywords

References

  1. Kim, T.G., "Modeling and Simulation Engineering", Communication of the Korea Information Science Society, Vol. 14, No 6, pp. 3-17, 2007.
  2. Kim, J.H., Moon, I.C., and Kim, T.G., "New insight into doctrine via simulation interoperation of heterogeneous levels of models in battle experimentation", Simulation: Transactions of The Society for Modeling and Simulation International, Vol. 88, No. 6, pp. 649-667, 2012. https://doi.org/10.1177/0037549711414773
  3. Seo, K.M., Song, H.S., Kwon S.J., and Kim, T.G., "Measurement of Effectiveness for an Anti-torpedo Combat System Using a Discrete Event Systems Specification-based Underwater Warfare Simulator", The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, Vol. 8, No. 3, pp. 157-171, 2011. https://doi.org/10.1177/1548512910390245
  4. Kweon, S.J. and Kim, T.G., "Design, Implementation and Performance Analysis of Event-oriented Execution Environment for DEVS", Journal of the Korea Society for Simulation, Vol. 20, No. 1, pp. 87-96, 2011. https://doi.org/10.9709/JKSS.2011.20.1.087
  5. Hong, J.H., Seo, K.M., and Kim, T.G., "Simulation-based optimization for design parameter exploration in hybrid system: a defense system example", Simulation: Transactions of The Society for Modeling and Simulation International, Vol. 89, No. 3, pp. 362-380, 2013. https://doi.org/10.1177/0037549712466707
  6. Kim, T.G., Theory and Technology of Defense M&S - Introduction, 2013 An Open Lecture for Industry-academic Cooperation, SMSLAB, KAIST, 2013.
  7. Ryoo, E.N., Ha, E.H., and Cho, J.Y., "Comparison of Learning Effects using High-fidelity and Multi-mode Simulation: An Application of Emergency Care for a Patient with Cardiac Arrest", Journal of Korean Academy of Nursing, Vol. 43, No. 2, pp. 185-193, 2013. https://doi.org/10.4040/jkan.2013.43.2.185
  8. Kim, C.J., Yang, C.D., Kim, S.H., and Hwang, C., "The Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part II. Applicability of High Fidelity Helicopter Models", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 36, No. 1, pp. 31-38, 2008. https://doi.org/10.5139/JKSAS.2008.36.1.031
  9. Vitali, R., Haftka, R.T., and Sankar, B.V., "Multi-fidelity design of stiffened composite panel with a crack", Structural and Multidisciplinary Optimization, Vol. 23, No, 5, pp. 347-356, 2002. https://doi.org/10.1007/s00158-002-0195-1
  10. Gano, S.E., Simulation-based design using variable fidelity optimization, Ph.D Thesis, University of Notre Dame, pp. 14-30, 2005.
  11. Fossen, T.I., Guidance and control of ocean vehicles, John wiley & sons, New York, NY, pp. 447-452, 1994.
  12. Lim, S.Y. and Kim, T.G., "Hybrid Systems Modeling and Simulation - Part I: Modeling and Simulation Methodology", Journal of the Korea Society for Simulation, Vol. 10, No. 3, pp. 1-14, 2001.
  13. Shin, J.H., "On the Development of Authoritative Representation of Torpedo Systems for Engagement Level Simulation", Journal of the Korea Society for Simulation, Vol. 16, No. 3, pp. 19-28, 2007.
  14. Hong, J.H. and Kim, T.G., "Interoperation between Engineering- and Engagement-level Models for System Effectiveness Analysis", Journal of the Korea Institute of Military Science and Technology, Vol. 19, No. 4, pp. 184-187, 2010.
  15. Seo, K.M. and Song, H.S., "Importance Sampling Embedded Experimental Frame Design for Efficient Monte Carlo Simulation", Journal of the Korea Contents Association, Vol. 13, No. 4, pp. 53-63, 2013. https://doi.org/10.5392/JKCA.2013.13.04.053