DOI QR코드

DOI QR Code

Development of Attitude Heading Reference System based on MEMS for High Speed Autonomous Underwater Vehicle

고속 자율 무인잠수정 적용을 위한 MEMS 기술기반 자세 측정 장치 개발

  • Received : 2013.09.11
  • Accepted : 2013.12.26
  • Published : 2013.12.31

Abstract

This paper proposes the performance evaluation test of attitude heading reference system (AHRS) suitable for small high speed autonomous underwater vehicle(AUV). Although IMU can provides the detail attitude information, it is sometime not suitable for small AUV with short operation time in view of price and the electrical power consumption. One of alternative for tactical grade IMU is the AHRS based micro-machined electro mechanical system(MEMS) which can overcome many problems that have inhibited the adoption of inertial system for small AUV such as cost and power consumption. A cost effective and small size AHRS which incorporates measurements from 3-axis MEMS gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for AUV and the attitude calculation algorithm is derived based the coordinate transform equation and Kalman filter. The developed AHRS was validated through various performance tests as like the magnetometer calibration, operating experiments using land mobile vehicle and flight motion simulator (FMS). The test of magnetometer calibration shows the developed MEMS AHRS is robust to the external magent field change and the test with land vehicle proves the leveling error of developed MEMS AHRS is below $0.5^{\circ}/hr$. The results of FMS test shows the fact that AHRS provides the measurement with $0.5^{\circ}/hr$ error during 5 minutes operation time. These results of performance evaluation tests showed that the developed AHRS provides attitude information which error of roll and pitch are below $1^{\circ}$ and the error of yaw is below $5^{\circ}$ and satisfies the required specification. It is expected that developed AHRS can provide the precise attitude measurement under sea trial with real AUV.

본 연구는 빠른 운항 속도와 짧은 운용 시간을 요구하는 임무에 활용될 저가 소형 자율 무인잠수정에 고가 대형 관성 측정 장치를 대신하여 사용할 수 있는 저가 소형 자세 측정 장치 개발 및 성능 검증을 수행하였다. 저가 소형 자세 측정 장치 개발을 위해서 MEMS 기술을 적용한 gyro, accelerometer 및 magnetometer 채택하여 MEMS 기반 하드웨어를 제작하였으며, 좌표 변환 공식과 칼만 필터를 적용하여 자세 계산 알고리즘을 구현하였다. 또한 개발된 MEMS 기반 자세 측정 장치에 대한 기본 성능 검증을 위한 지자기센서 검증 시험, 정적 자세 시험, 차량 시험, 운동 모사 장치 시험을 수행하였으며, 각각 시험 결과를 제시하였다. 지자기센서 검증 시험 결과 외부 자기장 보정을 통하면 개발된 MEMS 기반 자세 측정 장치의 측정 결과가 외부 자기장에 강인함을 확인하였으며, 정적 자세 시험 및 차량 시험을 통하여 자세 변화가 크지 않는 환경에서 자세 측정 오차가 $0.5^{\circ}/hr$ 임을 확인하였다. 운동 모사 장치 시험을 통하여 5분 내외 자세 변화가 큰 운동 중에도 자세 측정 오차가 발산하지 않고 $1^{\circ}/hr$ 이내임을 확인하였다. 상기 시험 결과로부터 개발된 MEMS 기반 자세 측정 장치가 목표 성능인 $1^{\circ}/hr$이내 roll, pitch, yaw 오차를 보여주고 있음 확인하였으며, 이로부터 20분 내외 운용 시간 동안 정확한 자세 정보 제공 가능성을 확인할 수 있었다.

Keywords

References

  1. Heo, O. C.(2010), Attitude estimation of the moving bodies using the MEMS sensor, Master Dissertation, Sungkyunkwan University.
  2. Hwang, A. and W. Seong(2012), "Simultaneous mapping and localization for small military unmanned underwater vehicle", DEFENCE SCIENCE JOURNAL, Vol. 22, No. 4, pp. 223-227.
  3. Hwang, A., W. Seong, and P. Lee(2012), Experiment on Simultaneous Localization and Mapping Based on Unscented Kalman Filter for Unmanned Underwater Vehicles, International Journal of Offshore and Polar Engineering, Vol. 22, No. 1, pp. 63-68.
  4. Hwang, A., W. Seong and P. M. Lee(2009). "Experiments of Unmanned Underwater Vehicle's 3 Degrees of Freedom Motion Applied the SLAM based on the Unscented Kalman Filter," Jounal of the Korea society of Ocean Engineering, Vol. 23, No. 2, pp. 58-68.
  5. Kim, H. S.(2011), Study on GPS and Sonar - INS for unmanned underwater vehicle, Master Dissertation, Korea Maritime University.
  6. Kim, Y. S., J. Lee, J. H. Kim, B. H. Jun and P. M. Lee(2009), "Path Tracking Control Based on RMAC in Horizontal Plane for a Torpedo-Shape AUV ISiMi, Jounal of the Korea society of Ocean Engineering, Vol. 23, No. 6, pp. 146-155.
  7. Lee, P. M., B. H. Jun, Y. K. Lim, S. W. Hong and S. I. Yang(2005), Pseudo Long Base Line (LBL) Hybrid Navigation Algorithm Based on Inertial Measurement Unit with Two Range Sonar, Jounal of the Korea society of Ocean Engineering, Vol. 19, No. 5, pp. 71-77.
  8. Negahdaripour, S., S. Cho and J. Y. Kim(2011), Controller design for an autonomous underwater vehicle using nonlinear observers, International Journal of Ocean System Engineering, Vol. 1, No. 1, pp. 16-27. https://doi.org/10.5574/IJOSE.2011.1.1.016
  9. Park, C. J. and S. J. Lee(2008), The Improvement Method of ARS Attitude depeding on Dynamic Conditions, Journal of the Korea Institute of Military Science and Technology, Vol. 11, No. 6, pp. 30-37.
  10. Showalter, S.(2004), The Legal Status Of Autonomous Under Vehicles, The Marine Technology Society Journal, Spring, Vol. 38, No. 1, pp. 80-83. https://doi.org/10.4031/002533204787522389
  11. Titterton, D. H. and J. L. Weston(1997), Strapdown inertial navigation technology, Peter Peregrinus Ltd.
  12. Yuh, J.(2000), Design and Control of Autonomous Underwater Robots: A Survey, in Autonomous Robots, Kluwer Academic Publishers, Printed in Netherlands, pp. 7-24.