DOI QR코드

DOI QR Code

Characterization of Cellulolytic and Xylanolytic Enzymes of Bacillus licheniformis JK7 Isolated from the Rumen of a Native Korean Goat

  • Seo, J.K. (Department of Agriculture Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Park, T.S. (Department of Agriculture Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Kwon, I.H. (Department of Animal Science, University of Illinois) ;
  • Piao, M.Y. (Department of Agriculture Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Lee, C.H. (Genebiotech Co. Ltd.) ;
  • Ha, Jong K. (Department of Agriculture Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University)
  • Received : 2012.09.17
  • Accepted : 2012.10.26
  • Published : 2013.01.01

Abstract

A facultative bacterium producing cellulolytic and hemicellulolytic enzymes was isolated from the rumen of a native Korean goat. The bacterium was identified as a Bacillus licheniformis on the basis of biochemical and morphological characteristics and 16S rDNA sequences, and has been designated Bacillus licheniformis JK7. Endoglucanase activities were higher than those of ${\beta}$-glucosidase and xylanase at all temperatures. Xylanase had the lowest activity among the three enzymes examined. The optimum temperature for the enzymes of Bacillus licheniformis JK7 was $70^{\circ}C$ for endoglucanase (0.75 U/ml) and $50^{\circ}C$ for ${\beta}$-glucosidase and xylanase (0.63 U/ml, 0.44 U/ml, respectively). All three enzymes were stable at a temperature range of 20 to $50^{\circ}C$. At $50^{\circ}C$, endoglucanse, ${\beta}$-glucosidase, and xylanase had 90.29, 94.80, and 88.69% residual activity, respectively. The optimal pH for the three enzymes was 5.0, at which their activity was 1.46, 1.10, and 1.08 U/ml, respectively. The activity of all three enzymes was stable in the pH range of 3.0 to 6.0. Endoglucanase activity was increased 113% by $K^+$, while $K^+$, $Zn^+$, and tween 20 enhanced ${\beta}$-glucosidase activity. Xylanase showed considerable activity even in presence of selected chemical additives, with the exception of $Mn^{2+}$ and $Cu^{2+}$. The broad range of optimum temperatures (20 to $40^{\circ}C$) and the stability under acidic pH (4 to 6) suggest that the cellulolytic enzymes of Bacillus licheniformis JK7 may be good candidates for use in the biofuel industry.

Keywords

References

  1. Archana, A. and T. Satyanarayana. 1997. Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzyme and Microb. Technol. 21:12-17. https://doi.org/10.1016/S0141-0229(96)00207-4
  2. Ariffin, H., M. A. Hassan, U. K. M. Shah, N. Abdullah, F. M. Ghazali and Y. Shirai. 2008. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by bacillus pumilus EB3. J. Biosci. Bioeng. 106:231-236. https://doi.org/10.1263/jbb.106.231
  3. Bajaj, B. K., H. Pangotra, M. A. Wani, P. Sharma and A. Sharma. 2009. Partial purification and characterization of a highly thermostable and pH stable endoglucanase from a newly isolated Bacillus strain M-9. Indian J. Chem. Technol. 16:382-387.
  4. Bischoff, K. M., S. Liu and S. R. Hughes. 2007. Cloning and characterization of a recombinant family 5 endoglucanase from Bacillus licheniformis strain B-41361. Process Biochem. 42:1150-1154. https://doi.org/10.1016/j.procbio.2007.05.001
  5. Choi, I., S. Wi, S. Jung, D. Patel and H.-J. Bae. 2009. Characterization and application of recombinant $\beta$-glucosidase (BglH) from Bacillus licheniformis KCTC 1918. J. Wood Sci. 55:329-334. https://doi.org/10.1007/s10086-009-1044-2
  6. Christakopoulos, P., D. G. Hatzinikolaou, G. Fountoukidis, D. Kekos, M. Claeyssens and B. J. Macris. 1999. Purification and mode of action of an alkali-resistant endo-1,4-$\beta$-glucanase from Bacillus pumilus. Arch. Biochem. Biophys. 364:61-66. https://doi.org/10.1006/abbi.1999.1102
  7. Damiano, V. B., D. A. Bocchini, E. Gomes and R. da Silva. 2003. Application of crude xylanase from Bacillus licheniformis 77-2 to the bleaching of eucalyptus Kraft pulp. World J. Microbiol. Biotechnol. 19:139-144. https://doi.org/10.1023/A:1023244911314
  8. Dong, J., Y. Hong, Z. Shao and Z. Liu. 2010. Molecular cloning, purification, and characterization of a novel, acidic, pH-stable endoglucanase from Martelella mediterranea. J. Microbiol. 48:393-398. https://doi.org/10.1007/s12275-010-9361-0
  9. Gao, J., H. Weng, D. Zhu, M. Yuan, F. Guan and Y. Xi. 2008. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour. Technol. 99:7623-7629. https://doi.org/10.1016/j.biortech.2008.02.005
  10. Geetha, K. and P. Gunasekaran. 2010. Optimization of nutrient medium containing agricultural waste for xylanase production by Bacillus pumilus B20. Biotechnol. Bioprocess Eng. 15:882-889. https://doi.org/10.1007/s12257-009-3094-0
  11. Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59:257-268. https://doi.org/10.1351/pac198759020257
  12. Hong, J., H. Tamaki, S. Akiba, K. Yamamoto and H. Kumagai. 2001. Cloning of a gene encoding a highly stable endo-b-1,4-glucanase from Aspergillus niger and its expression in yeast. J. Biosci. Bioeng. 92:434-441. https://doi.org/10.1016/S1389-1723(01)80292-9
  13. Karnchanatat, A., A. Petsom, P. Sanvanich, J. Piaphukiew, A. J. Whalley, C. D. Reynolds and P. Sihanonth. 2007. Purification and biochemical characterization of an extracellular $\beta$-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. FEMS Microbiol. Lett. 270: 162-170. https://doi.org/10.1111/j.1574-6968.2007.00662.x
  14. Ko, C.-H., Z.-P. Lin, J. Tu, C.-H. Tsai, C.-C. Liu, H.-T. Chen and T.-P. Wang. 2010. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Int. Biodeterior. Biodegradation 64:13-19. https://doi.org/10.1016/j.ibiod.2009.10.001
  15. Ko, C.-H., C.-H. Tsai, J. Tu, B.-Y. Yang, D.-L. Hsieh, W.-N. Jane and T.-L. Shih. 2011. Identification of Paenibacillus sp. 2S-6 and application of its xylanase on biobleaching. Int. Biodeterior. Biodegradation 65:334-339. https://doi.org/10.1016/j.ibiod.2010.12.006
  16. Kui, H., H. Luo, P. Shi, Y. Bai, T. Yuan, Y. Wang, P. Yang, S. Dong and B. Yao. 2009. Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl. Biochem. Biotechnol. 162:953-965.
  17. Kumar, R., S. Singh and O. V. Singh. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35:377-391. https://doi.org/10.1007/s10295-008-0327-8
  18. Lee, Y.-J., B.-K. Kim, B.-H. Lee, K.-I. Jo, N.-K. Lee, C.-H. Chung, Y.-C. Lee and J.-W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99:378-386. https://doi.org/10.1016/j.biortech.2006.12.013
  19. Li, W., X. Huan, Y. Zhou, Q. Ma and Y. Chen. 2009. Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi). Biochem. Biophys. Res. Commun. 383:397-400. https://doi.org/10.1016/j.bbrc.2009.04.027
  20. Liang, Y., J. Yesuf, S. Schmitt, K. Bender and J. Bozzola. 2009. Study of cellulases from a newly isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. J. Ind. Microbiol. Biotechnol. 36:961-970. https://doi.org/10.1007/s10295-009-0575-2
  21. Maki, M., K. T. Leung and W. Qin. 2009. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5:500-516.
  22. Mamo, G., R. Hatti-Kaul and B. Mattiason. 2006. Athermostable alkaline active endo-$\beta$-1,4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme Microb. Biotechnol. 39:1492-1498. https://doi.org/10.1016/j.enzmictec.2006.03.040
  23. Mawadza, C., R. Hatti-Kaul, R. Zvauya and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83:177-187. https://doi.org/10.1016/S0168-1656(00)00305-9
  24. Moaledh, K. 1986. Comparison of Gram-stainig and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J. Microbiol. Methods 5:303-310. https://doi.org/10.1016/0167-7012(86)90056-4
  25. Peixoto, S. B., F. Cladera-Olivera, D. J. Daroit and A. Brandelli. 2011. Cellulase-producing Bacillus strains isolated from the intestine of Amazon basin fish. Aquac. Res. 42:887-891. https://doi.org/10.1111/j.1365-2109.2010.02727.x
  26. Percival Zhang, Y. H., M. E. Himmel and J. R. Mielenz. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24:452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003
  27. Rastogi, G., A. Bhalla, A. Adhikari, K. M. Bischoff, S. R. Hughes, L. P. Christopher and R. K. Sani. 2010. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour. Technol. 101:8798-8806. https://doi.org/10.1016/j.biortech.2010.06.001
  28. Rastogi, G., G. L. Muppidi, R. N. Gurram, A. Adhikari, K. M. Bischoff, S. R. Hughes, W. A. Apel, S. S. Bang, D. J. Dixon and R. K. Sani. 2009. Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J. Ind. Microbiol. Biotechnol. 36:585-598. https://doi.org/10.1007/s10295-009-0528-9
  29. Rizzatti, A. C., J. A. Jorge, H. F. Terenzi, C. G. Rechia and M. L. Polizeli. 2001. Purification and properties of a thermostable extracellular beta-D-xylosidase produced by a thermotolerant Aspergillus phoenicis. J. Ind. Microbiol. Biotechnol. 26:156-160. https://doi.org/10.1038/sj.jim.7000107
  30. Roboson, L. M. and G. H. Chambliss. 1989. Celluases of bacterial origin. Enzyme Microb. Technol. 11:626-644. https://doi.org/10.1016/0141-0229(89)90001-X
  31. Samiullah, T. R., A. Bakhsh, A. Q. Rao, M. Naz and M. Saleem. 2009. Isolation, Purification and characterization of extracellular $\beta$-glucosidase from Bacillus sp. Adv. Environ. Biol. 3:269-277.
  32. Saratale, G. D. and S. E. Oh. 2011. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU. Biodegradation.
  33. SAS. 1996. SAS user's guide: Statistics, Version 6.12th edition. SAS Institute Inc. Cary, NC, USA.
  34. Scott, H. W. and B. A. Dehority. 1965. Vitamin requirements of several cellulolytic rumen bacteria. J. Bacteriol. 89:1169-1175.
  35. Shallmey, M., A. Singh and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50:1-17. https://doi.org/10.1139/w03-076
  36. Sharma, A., S. Adhikari and T. Satyanarayana. 2007. Alkali-thermostable and cellulase free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J. Microbiol. Biotechnol. 23:483-490. https://doi.org/10.1007/s11274-006-9250-1
  37. Sneath, P. H. A., N. S. Mair, M. E. Sharpe and J. G. Holt. 1986. Bergy's Manual of Systematic Bacteriology, vol 2. Baltimore, Williams & Wilkins.
  38. Son, Y. S. 1999. Production and uses of Korean Native Black Goat. Small Rumin. Res. 34:303-308. https://doi.org/10.1016/S0921-4488(99)00081-4
  39. Trivedi, N., V. Gupta, M. Kumar, P. Kumari, C. R. K. Reddy and B. Jha. 2011. An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr. Polym. 83:891-897. https://doi.org/10.1016/j.carbpol.2010.08.069
  40. van Dyk, J. S., M. Sakka, K. Sakka and B. I. Pletschke. 2009. The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme Microb. Technol. 45:372-378. https://doi.org/10.1016/j.enzmictec.2009.06.016
  41. van Dyk, J. S., M. Sakka, K. Sakka and B. I. Pletschke. 2010. Identification of endoglucanases, xylanases, pectinases and mannanases in the multi-enzyme complex of Bacillus licheniformis SVD1. Enzyme Microb. Technol. In Press, Corrected Proof, 47:112-118. https://doi.org/10.1016/j.enzmictec.2010.05.004
  42. Wang, C. M., C. L. Shyu, S. P. Ho and S. H. Chiou. 2008. Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Lett. Appl. Microbiol. 47:46-53. https://doi.org/10.1111/j.1472-765X.2008.02385.x
  43. Williams, A. G. and S. E. Withers. 1983. Bacillus spp. in the rumen ecosystem. Hemicellulose depolymerases and glycoside hydrolases of Bacillus spp. and rumen isolates grown under anaerobic conditions. J. Appl. Bacteriol. 55:283-292. https://doi.org/10.1111/j.1365-2672.1983.tb01325.x
  44. Yang, V. W., Z. Zhuang, G. GffElegir and T. W. Jeffries. 1995. Alkaline-active xylanase produced by an alkaliphilic Bacillus sp. isolated from kraft pulp. J. Ind. Microbiol. 15:434-441. https://doi.org/10.1007/BF01569971
  45. Yin, L.-J., H.-H. Lin, Y.-I Chiang and S.-T. Jiang. 2010. Bioproperties and Purification of Xylanase from Bacillussp. YJ6. J. Agric. Food Chem. 58:557-562. https://doi.org/10.1021/jf902777r

Cited by

  1. Production of Endoglucanase, Beta-glucosidase and Xylanase by <i>Bacillus licheniformis</i> Grown on Minimal Nutrient Medium Containing Agriculture Residues vol.27, pp.7, 2014, https://doi.org/10.5713/ajas.2014.14082
  2. Fibrolytic Bacteria Isolated from the Rumen of North American Moose (Alces alces) and Their Use as a Probiotic in Neonatal Lambs vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0144804
  3. Cloning and Characterization of an Endoglucanase Gene from Actinomyces sp. Korean Native Goat 40 vol.29, pp.1, 2015, https://doi.org/10.5713/ajas.15.0616
  4. Biochemical properties of a new thermo- and solvent-stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3 vol.4, pp.1, 2017, https://doi.org/10.1186/s40643-017-0161-9
  5. Feeding a High Concentration Diet Induces Unhealthy Alterations in the Composition and Metabolism of Ruminal Microbiota and Host Response in a Goat Model vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00138
  6. Co-culturing of Novel Bacillus Species Isolated from Municipal Sludge and Gut of Red Wiggler Worm for Improving CMCase Activity pp.1877-265X, 2020, https://doi.org/10.1007/s12649-018-0448-x
  7. The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02285
  8. Biotechnological potential of microbial consortia and future perspectives vol.38, pp.8, 2018, https://doi.org/10.1080/07388551.2018.1471445
  9. Development of eco-friendly process for the production of bioethanol from banana peel using inhouse developed cocktail of thermo-alkali-stable depolymerizing enzymes vol.41, pp.7, 2018, https://doi.org/10.1007/s00449-018-1930-3
  10. Production, Purification, and Characterization of Thermostable Alkaline Xylanase From Anoxybacillus kamchatkensis NASTPD13 vol.6, pp.2296-4185, 2018, https://doi.org/10.3389/fbioe.2018.00065
  11. Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen vol.88, pp.3, 2014, https://doi.org/10.1111/1574-6941.12318
  12. Degradation Characteristics of A Novel Multi-Enzyme-Possessing Bacillus licheniformis TK3-Y Strain for the Treatment of High-Salinity Fish Wastes and Green Seaweeds vol.18, pp.4, 2013, https://doi.org/10.5657/fas.2015.0349
  13. Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus vol.15, pp.12, 2013, https://doi.org/10.1021/acs.jproteome.6b00465
  14. Isolation and Characterization of a Thermostable Cellulase from Bacillus licheniformis Strain Vic Isolated from Geothermal Wells in the Kenyan Rift Valley vol.10, pp.1, 2013, https://doi.org/10.2174/1874070701610010198
  15. Biochemical characterization and low-resolution SAXS structure of an exo-polygalacturonase from Bacillus licheniformis vol.40, pp.2, 2018, https://doi.org/10.1016/j.nbt.2017.10.001
  16. Exogenous fibrolytic enzymes and recombinant bacterial expansins synergistically improve hydrolysis and in vitro digestibility of bermudagrass haylage vol.102, pp.9, 2013, https://doi.org/10.3168/jds.2019-16339
  17. Isolation and Characterization of Potential Cellulose Degrading Bacteria from Sheep Rumen vol.13, pp.3, 2019, https://doi.org/10.22207/jpam.13.3.60
  18. Cellulolytic thermophilic microorganisms in white biotechnology: a review vol.65, pp.1, 2020, https://doi.org/10.1007/s12223-019-00710-6
  19. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods vol.51, pp.1, 2013, https://doi.org/10.1007/s42770-019-00162-7
  20. Characterization of crude cellulase enzyme produced by Bacillus licheniformis P12 isolate vol.475, pp.None, 2013, https://doi.org/10.1088/1755-1315/475/1/012085
  21. Systematic Analysis of Escherichia coli Isolates from Sheep and Cattle Suggests Adaption to the Rumen Niche vol.86, pp.20, 2013, https://doi.org/10.1128/aem.01417-20
  22. Production and partial characterization of a crude cold-active cellulase (CMCase) from Bacillus mycoides AR20-61 isolated from an Alpine forest site vol.70, pp.1, 2020, https://doi.org/10.1186/s13213-020-01607-3
  23. Optimization of xylanase from Pseudomonas mohnii isolated from Simlipal Biosphere Reserve, Odisha, using response surface methodology vol.18, pp.1, 2013, https://doi.org/10.1186/s43141-020-00099-7
  24. Lignocelluloytic activities and composition of bacterial community in the camel rumen vol.7, pp.3, 2013, https://doi.org/10.3934/microbiol.2021022
  25. Effects of feed supplementation with 3 different probiotic Bacillus strains and their combination on the performance of broiler chickens challenged with Clostridium perfringens vol.100, pp.4, 2013, https://doi.org/10.1016/j.psj.2021.01.005
  26. Biotechnological applications of Bacillus licheniformis vol.41, pp.4, 2013, https://doi.org/10.1080/07388551.2021.1873239
  27. Diversity and Activity of Aquatic Cellulolytic Bacteria Isolated from Sedimentary Water in the Littoral Zone of Tonle Sap Lake, Cambodia vol.13, pp.13, 2021, https://doi.org/10.3390/w13131797
  28. Enhanced Activity by Genetic Complementarity: Heterologous Secretion of Clostridial Cellulases by Bacillus licheniformis and Bacillus velezensis vol.26, pp.18, 2013, https://doi.org/10.3390/molecules26185625