Study of Optimal Fertilization with Vector Analysis in Hardwood and Softwood Seedlings

양분벡터분석을 이용한 활엽수와 침엽수 묘목의 적정 시비량 연구

  • Park, Byeong-Bae (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Byun, Jae Kyung (Korea Forestry Promotion Institute) ;
  • Sung, Joo Han (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Cho, Min Seok (Forest Practice Research Center, Korea Forest Research Institute)
  • 박병배 (국립산림과학원 산림생태연구과) ;
  • 변재경 (한국임업진흥원) ;
  • 성주한 (국립산림과학원 산림생태연구과) ;
  • 조민석 (국립산림과학원 산림생산기술연구소)
  • Received : 2013.07.23
  • Accepted : 2013.10.07
  • Published : 2013.10.31

Abstract

This study was conducted to determine the optimum amount of fertilizer for Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla seedlings with vector analysis. As the amount of fertilizer increases, the height and root collar diameter of F. rhychophylla and F. mandshurica increased and those of P. koraiensis and A. holophylla were not significantly changed. Treatment 1x (N $6.9gm^{-2}$, P $3.1gm^{-2}$, 2x (two times of 1x) and 4x (four times of 1x) improved the dry weight of F. rhynchophylla by 43, 11, and 87% and that of F. mandshurica by 36, 145 and 143% respectively compared with the control. However, the dry weight of P. koraiensis and A. holophylla was not different among fertilization treatments. The responses of vector exhibit a different inclination depending on tree species and the amount of fertilizer. F. rhynchophylla is in the status of N "deficiency" which means the N concentration does not increase as much as the increment of growth and nutrient content; F. mandshurica is in a condition of N "dilution" which refers the concentration decreases since the growth increases more than the absorption of nutrients; P. koraiensis and A. holophylla show the state of N "antagonism" which indicates the concentration decreases slightly while the growth does not increase nearly. This study suggests that F. rhynchophylla and F. mandshurica require to fertilize 2x or more and P. koraiensis and A. holophylla do not need to fertilize at the initial stage of outplanting.

묘목 생산성과 적절한 품질을 유지하기 위하여 시비는 매우 중요하지만, 수종에 따른 최적의 시비량을 결정하기는 어렵다. 이 연구에서는 경제림 육성 수종인 물푸레나무, 들메나무, 잣나무, 전나무를 대상으로 복합비료 1x(N $6.9gm^{-2}$, P $3.1gm^{-2}$, K $3.7gm^{-2}$), 2x(1x의 2배), 4x(1x의 4배) 처리가 묘목의 생장과 양분변화에 미치는 영향을 양분벡터분석(Vector diagnosis)을 이용하여 정량화하였다. 시비량이 증가함에 따라 물푸레나무와 들메나무의 수고와 근원경은 증가하는 경향을 보였고 잣나무와 전나무는 시비량에 따른 차이를 보이지 않았다. 처리 1x, 2x, 4x는 대조에 비하여 물푸레나무의 건중량을 각각 43, 11, 87% 증가시켰고, 들메나무는 각각 36, 145, 143% 더 증가시켰다. 반면 잣나무와 전나무 건중량은 시비량에 따른 유의한 차이가 없었다. 시비에 대한 양분벡터반응은 수종과 시비량에 따라 상이한 경향을 보였는데, 물푸레나무 조직의 질소 농도는 생장 및 질소함량의 증가만큼 증가하지 않는 "양분결핍" 상태였고, 들메나무는 흡수한 것보다 생장이 증가하여 농도가 감소하는 "양분희석" 상태였으며, 잣나무와 전나무는 생장이 거의 증가하지 않으면서 농도는 약간 감소하는 "과량길항" 현상을 보였다. 본 연구는 물푸레나무와 들메나무는 처리 2x 또는 그 이상의 시비가 요구되고, 잣나무와 전나무의 경우 초기 시비를 하지 않아도 생장과 양분 흡수에 문제가 없음을 보여주고 있다.

Keywords

References

  1. Aldrich, D.G., Parker, E.R. and Chapman, H.D. 1945. Effects of several nitrogenous fertilizers and soil amendments on the physical and chemical properties of an irrigated soil. Soil Science 59(4): 299-312. https://doi.org/10.1097/00010694-194504000-00005
  2. Barak, P., Jobe, B.O., Krueger, A.R., Peterson, L.A. and Laird, D.A. 1997. Effects of long-term soil acidification due to nitrogen inputs in Wisconsin. Plant and Soil 197: 61-69. https://doi.org/10.1023/A:1004297607070
  3. Bayala, J., Dianda, M., Wilson, J., Ouedraogo, S. and Sanon, K. 2009. Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa. New Forests 38(3): 309-322. https://doi.org/10.1007/s11056-009-9149-4
  4. Brady, N.C. and R.R. Weil. 2002. The nature and properties of soils. Pearson Education, Inc. New Jersey, pp. 960.
  5. Binkley, D. 1986. Forest Nutrition Management. Wiley-Interscience. New York, U.S.A. pp. 290.
  6. Byun, J.K., Kim, Y.S., Yi, M.J., Son, Y., Kim, C.S., Jeong, J.H., Lee, C.H., and Jeomg, Y.H. 2007. Growth response of Pinus densiflora, Larix Leptolepis, Betula platyphylla var. japonica and Quercus acutissima seedlings at various levels of fertilizations. Journal of Korean Forest Society. 96(3): 693-698.
  7. Carlson, W.C. 1981. Effects of controlled-release fertilizers on the shoot and root development of outplanted western hemlock (Tsuga heterophylla Raf. Sarg.) seedlings. Canadian Journal of Forest Research 11(4): 752-757. https://doi.org/10.1139/x81-107
  8. Davis, M.R. and Lang, M.H. 1991. Increased nutrient availability in topsoils under conifers in the South Island high country. New Zealand Journal of Forest Science 21: 165-179.
  9. De Visser, P.H.B. and Keltjens, W.G. 1993. Growth and nutrient uptake of Douglas-fir seedlings at different rates of ammonium supply, with or without additional nitrate and other nutrients. Netherland Journal of Agricultural Science 41(4): 327-341.
  10. Geiger, S.C., Manu, A. and Bationo, A. 1992. Changes in a sandy sahelian soil following crop residue and fertilizer additions. Soil Science Society of America Journal 56(1): 172-177. https://doi.org/10.2136/sssaj1992.03615995005600010027x
  11. Haase, D.L. and Rose, R. 1995. Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments. Forest Science 41(1): 54-66.
  12. Isaac, M.E. and Kimaro, A.A. 2011. Diagnosis of nutrient imbalances with vector analysis in Agroforestry systems. Journal of Environmental Quality 40: 860-866. https://doi.org/10.2134/jeq2010.0144
  13. Imo, M. and Timmer, V.R. 1999. Vector competition analysis of black spruce seedling responses to nutrient loading and vegetation control. Canadian Journal of Forest Research 29(4): 474-486. https://doi.org/10.1139/x99-020
  14. Ingestad T. and Agren G.I. 1992. Theories and methods on plant nutrition and growth. Phsiologia Plantarum 84(1): 177-184. https://doi.org/10.1111/j.1399-3054.1992.tb08781.x
  15. Jacobs, D.F. and Timmer, V.R. 2005. Fertilizer-induced changes in rhizosphere electrical conductivity: relation to forest tree seedling root system growth and function. New Forests 30(2-3): 147-166. https://doi.org/10.1007/s11056-005-6572-z
  16. Kang, H.S., Lim, J.H., Chun, J.H., Lee, I.K., Kim, Y.K. and Lee, J.H. 2007. Invasion of Korean pine seedlings originated from neighbor plantations into the natural mature deciduous broad-leaved forest in Gwangneung, Korea. Journal of Korean Forest Society 96(1): 107-114.
  17. Liu, Y., Laird D.A. and Barak, P. 1997. Dynamics of fixed and exchangeable NH4 and K in soils under long term fertility management. Soil Science Society of America Journal 61:310-314. https://doi.org/10.2136/sssaj1997.03615995006100010044x
  18. Marschner, H. 2002. Mineral nutrition of higher plants. 2nd edition. Academic Press, San Diego, U.S.A. pp. 889.
  19. Park, B.B., Byun, J.K., Kim, W.S., and Sung, J.H. 2010. Growth and tissue nutrient responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla seedlings fertilized with nitrogen, phosphorus, and potassium at a nursery culture. Journal of Korean Forest Society 99(1): 85-95.
  20. Park, B.B., Byun, J.K., Park, P.S., Lee, S.W. and Kim, W.S. 2010. Growth and tissue nutrient responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla seedlings fertilized with nitrogen, phosphorus, and potassium. Journal of Korean Forest Society 99(2): 186-196.
  21. Park, B.B., Cho, M.S., Lee, S.W., Yanai, R.D. and Lee, D.K. 2012. Minimizing nutrient leaching and improving nutrient use efficiency of Liriodentron tulipifera and Larix leptolepis in a container nursery system. New Forests 43: 57-68. https://doi.org/10.1007/s11056-011-9266-8
  22. Quoreshi, M. and Timmer, V.R. 2000. Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: A bioassay study. Canadian Journal of Forest Research 30(5): 744-752. https://doi.org/10.1139/x00-003
  23. Salifu, K.F. and Timmer, V.R. 2003. Nitrogen retranslocation response of young Picea marianna to nitrogen-15 supply. Soil Science Society of America Journal 67(1): 309-317. https://doi.org/10.2136/sssaj2003.0309
  24. Shin, J.A., Son, Y., Hong, S.G. and Kim, Y.K. 1999. Effect of N and P fertilization on nutrient use efficiency of Pinus densiflora, Larix leptolepis, and Betula platyphylla var. japonica seedlings. Korean Journal of Environmental Agriculture 18(4): 304-309.
  25. Son, Y., Kim, Z.S., Hwang, J.H. and Park J.S. 1998. Fertilization effects on growth, foliar nutrients and extract concentrations in ginkgo seedlings. Journal of Korean Forest Society 87(1): 98-105.
  26. Son, Y., Seo, K.Y., Kim, R.H., Koo, J.W., Yi, M.J. and Kim, J.H. 2005. Biomass and nutrient distribution of Pinus koraiensis seedlings invading a mixed forest dominated by Quercus mongolica. Forest Science and Technology 1(1): 8-12. https://doi.org/10.1080/21580103.2005.9656262
  27. Teng, Y. and Timmer, V.R. 1995. Rhizosphere phosphorus depletion induced by heavy nitrogen fertilization in forest nursery soils. Soil Science Society of America Journal 59(1): 227-233. https://doi.org/10.2136/sssaj1995.03615995005900010035x
  28. Timmer, V.R. 1996. Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites. New Forests 13(1-3): 275-295.
  29. Timmer, V.R. and Stone, E.L. 1978. Comparative foliar analysis of young balsam fir fertilized with nitrogen, phosphorus, potassium, and lime. Soil Science Society of America Journal 42(1): 125-130. https://doi.org/10.2136/sssaj1978.03615995004200010027x
  30. Won, H.K., Lee, Y.Y., Jeong, J.H., Koo, K.S., Lee, C.H., Lee, S.W., Jeomg, Y.H., Kim, C.S., and Kim, H.H. 2006. Fertilization effects on soil properties, understory vegetation structure and growth of Pinus densiflora seedlings planted after forest fires. Journal of Korean Forest Society. 95(3): 334-341.