DOI QR코드

DOI QR Code

Recovery of Platinum from Spent Petroleum Catalysts by a Hydrometallurgical Method

  • Sun, Panpan (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Manseung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • Received : 2013.04.04
  • Published : 2013.12.05

Abstract

Platinum was recovered from the leaching solution of spent petroleum catalysts by solvent extraction. The spent catalysts were first roasted at $800^{\circ}C$ to eliminate volatile matter. Most of the platinum in the spent catalysts was dissolved at an optimum leaching condition in a mixture of HCl and $H_2O_2$. Separation of platinum from the leaching solution was accomplished by solvent extraction with Aliquat 336 after iron was removed by extraction with TBP. Platinum and iron were stripped from the loaded Aliquat 336 and TBP by using 1 M $HClO_4$ and 0.1 M HCl, respectively. Finally, HCl in the raffinate was recovered by extraction with TEHA and then by stripping with water. The optimum conditions to dissolve platinum and to separate platinum by solvent extraction are reported together with the mass balance of the constituents of the spent catalysts in each step.

Keywords

Acknowledgement

Supported by : KEITI

References

  1. G. Greggio, P. Sgarbossa, A. Scarso, R. A. Michelin, and G. Strukul, Inorg. Chim. Acta 361, 3230 (2008). https://doi.org/10.1016/j.ica.2007.10.042
  2. K. C. Chiang, K. L. Chen, C. Y. Chen, J. J. Huang, Y. H. Shen, M. Y. Yeh, and F. F. Wong, J. TW. Inst. Chem. Eng. 42, 158 (2011). https://doi.org/10.1016/j.jtice.2010.05.003
  3. D. R. Tyson and R. G. Bautista, Sep. Sci. Technol. 22, 1149 (1987). https://doi.org/10.1080/01496398708069004
  4. J. R. Cui and L. F. Zhang, J. Hazard. Mater. 158, 228 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.001
  5. R. H. Matjie, M. S. Scurrell, and J. Bunt, Miner. Eng. 18, 801 (2005). https://doi.org/10.1016/j.mineng.2005.01.030
  6. D. Jafarifar, M. R. Daryanavard, and S. sheibani, Hydrometallurgy 78, 166 (2005). https://doi.org/10.1016/j.hydromet.2005.02.006
  7. M. A. Barakat and M. H. H. Mahmoud, Hydrometallurgy 72, 179 (2004). https://doi.org/10.1016/S0304-386X(03)00141-5
  8. M. Baghalha, Gh. H. Khosravian, and H. R. Mortaheb, Hydrometallurgy 95, 247 (2009). https://doi.org/10.1016/j.hydromet.2008.06.003
  9. S. Harjanto, Y. Cao, A. Shibayama, I. Naitoh, T. Nanami, K. Kasahara, Y. Okumura, K. J. Liu, and T. Fujita, Mater. Trans. 47, 129 (2006). https://doi.org/10.2320/matertrans.47.129
  10. C. Nowottny, W. Halwachs, and K. Schugerl, Sep. Purif. Technol. 12, 135 (1997). https://doi.org/10.1016/S1383-5866(97)00041-5
  11. B. R. Reddy, B. Raju, J. Y. Lee, and H. K. Park, J. Hazard. Mater. 180, 253 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.022
  12. P. P. Sun and M. S. Lee, Mater. Trans. 54, 74 (2013). https://doi.org/10.2320/matertrans.M2012320
  13. J. Bassett, R. C. Denney, G. H. Jeffery, and J. Mendham, Vogel's textbook of quantitative inorganic analysis, 4th ed., pp.244-246, Longman, New York (1978).
  14. A. J. Bard, R. Parsons, and J. Jordan, Standard potentials in aqueous solution, p.347, Marcel Dekker, New York (1985).
  15. A. Zanjani and M. Baghalha, Hydrometallurgy 97, 119 (2009). https://doi.org/10.1016/j.hydromet.2009.02.001
  16. S. P. Barik, K. H. Park, P. K. Parhi, and J. T. Park, Hydrometallurgy 111, 46 (2012).
  17. R. S. Marinho, J. C. Afonso, and J. W. S. D. Cunha, J. Hazard. Mater. 179, 488 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.029
  18. J. Vinnals, A. Roca, M. C. Hernandez, and O. Benavente, Hydrometallurgy 68,183 (2003). https://doi.org/10.1016/S0304-386X(02)00200-1
  19. K. H. Park, D. Mohapatra, and B. R. Ramachandra, Sep. Purif. Technol. 51, 332 (2006). https://doi.org/10.1016/j.seppur.2006.02.013
  20. A. Szymczycha-Madeja, J. Hazard. Mater. 186, 2157 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.120
  21. M. S. Lee, J. Y. Lee, J. R. Kumar, J. S. Kim, and J. S. Sohn, Mater. Trans. 49, 2823 (2008). https://doi.org/10.2320/matertrans.MRA2008305
  22. B. R. Reddy and P. V. R. Bhaskara Sarma, Hydrometallurgy 43, 299 (1996). https://doi.org/10.1016/0304-386X(95)00117-Y
  23. A. Jaree and N. Khunphakdee, J. Ind. Eng. Chem. 17, 243 (2011). https://doi.org/10.1016/j.jiec.2011.02.013
  24. R. S. Marinho, J. C. Afonso, and J. W. S. D. Cunha, J. Hazard. Mater. 179, 488 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.029
  25. A. A. Mhaske and P. M. Dhadke, Hydrometallurgy 61, 143 (2001). https://doi.org/10.1016/S0304-386X(01)00152-9
  26. S. N. Duche and P. M. Dhadke, Sep. Sci. Technol. 37, 3011 (2002). https://doi.org/10.1081/SS-120005647
  27. D. F. Haghshenas, D. Darvishi, H. Rafieipour, E. K. Alamdari, and A. A. Salardini, Hydrometallurgy 97, 173 (2009). https://doi.org/10.1016/j.hydromet.2009.02.006