DOI QR코드

DOI QR Code

Dye-Sensitized Solar Cells for Ruthenium Counter Electrodes Employing Polystyrene Beads and ZnO

폴리스틸렌 비드와 ZnO를 이용한 표면적이 증가된 Ru 염료감응형 태양전지 상대전극 물성 평가

  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2013.02.12
  • Published : 2013.12.05

Abstract

In order to improve the energy conversion efficiency (ECE) by increasing the surface area of counter electrode (CE), we prepared 500 nm-polystyrene (PS) beads on a flat glass substrate, deposited with 100 nm-thick ZnO and 34 nm-thick Ru nano thin film using ALD. A 34 nm-thick Ru CE on a flat glass substrate was also prepared using the same method for a comparison. Finally, a $0.45cm^2$ dye-sensitized solar cell (DSSC) device with a glass/FTO/blocking layer/$TiO_2$/N719(dye)/electrolyte/34 nm-Ru/100 nm-ZnO/500 nm-PS bead/glass structure was fabricated. The microstructure of the CE was examined by field emission scanning electron microscopy (FE-SEM). The photovoltaic properties, such as the short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), energy conversion efficiency (ECE) and impedance, were characterized using a solar simulator and potentiostat. The microstructure examined using a FE-SEM confirmed that 100 nm-ZnO/34 nm-Ru on 500 nm-PS beads increases the surface area by 70% compared to a glass substrate. The ECE of the device with the CE, the glass/Ru and 500 vnm-beads/100 vnm-ZnO/Ru, was 1.81%, and 2.91%, respectively. These results suggest that the surface area of the CE contributed to the increase in efficiency. Moreover, increasing of surface area through ZnO coating on PS beads was more suitable for increasing efficiency than the conventional flat glass substrates.

Keywords

References

  1. M. Gratzel, Inorg. Chem. 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  2. Y. H. Luo, D. M. Li, and Q. B. Meng, Adv. Mater. 21, 4647 (2009). https://doi.org/10.1002/adma.200901078
  3. J. Han, K. Yoo, M. J. Ko, B. Yu, Y. Noh, and O. Song, Met. Mater. Int. 18, 105 (2012). https://doi.org/10.1007/s12540-012-0013-2
  4. J. Kim, D. Kim, S. Hwang, H. Kim, Met. Mater. Int. 18, 539 (2012). https://doi.org/10.1007/s12540-012-3025-z
  5. M. Grazel, J. Photochem. Photobiol. C 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  6. M. Adachi, Y. Murata, J. T. Kao, J. T. Jiu, M. Sakamoto, and F. M. Wang, J. Am. Chem. Soc. 126, 14943 (2004). https://doi.org/10.1021/ja048068s
  7. S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, J. Photochem. photobiol. A Chem. 164, 145 (2004). https://doi.org/10.1016/j.jphotochem.2003.11.016
  8. S. S. Mali, C. A. Betty, P. N. Bhosale, and P. S. Patil, Electrochim. Acta 59, 113 (2012). https://doi.org/10.1016/j.electacta.2011.10.043
  9. K. J. Hwang, W. G. Shim, S. H. Jung, S. J. Yoo, and J. W. Lee, Appl. Surf. Sci. 17, 5428 (2010).
  10. Y. Ooyam and Y. Harima, Eur. J. Org. Chem. 18, 2903 (2009).
  11. B. O'Reagan and M. Gratzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  12. P. Wang, S. M. Zakeeruddin, J. E. Moser, and M. Gratzel, J. Phys. Chem. B 107, 13280 (2003). https://doi.org/10.1021/jp0355399
  13. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, Nature Materialsm 2, 402 (2003). https://doi.org/10.1038/nmat904
  14. N. Papageorgiou, W. F. Maier, and M. Gratzel, J. Electrochem. Soc. 144, 876 (1997). https://doi.org/10.1149/1.1837502
  15. H. Bonnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, and E. Dinjus, J. Cluster Science 18, 141 (2007). https://doi.org/10.1007/s10876-006-0092-7
  16. H. M. Kwon, D. W. Han, D. J. Kwak, and Y. M. Sung, Appl. Phys. 10, 172 (2010).
  17. Y. Y. Noh, K. C. Yoo, M. J. Ko, and O. S. Song, Korean J. Met. Mater. 51, 239 (2013).
  18. C. Y. Chou, C. P. Lee, R. Vittal, and K. C. Ho, J. Power Sources 196, 6595 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.084
  19. M. H. Jung, H. G. Yun, S. Kim, and M. G. Kang, Electrochim. Acta 55, 6563 (2010). https://doi.org/10.1016/j.electacta.2010.06.021
  20. J. H. Yoon, Ph. D. Thiesis, pp.102-113, University Of Seoul, Seoul, Korea (2012).
  21. Y. Li, Y. Fan, and J. Ma, polymer degradation and stability 73, 163 (2001). https://doi.org/10.1016/S0141-3910(01)00083-0
  22. B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001). https://doi.org/10.1063/1.1394173
  23. P. Nunes, E. Fortunato, P. Tonello, F. Brazfernandes, P. Vilarinho, and R. Ma rtins, Vacuum 64, 281 (2002). https://doi.org/10.1016/S0042-207X(01)00322-0
  24. G. G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, J. Euro. Ceram. Soc. 241, 246 (2004).
  25. S. S. Yim, D. J. Lee, K. S. Kim, M. S. Lee, S. H. Kim, and K. B. Kim, Electrochem, and Solid-State Lett. 11, K89 (2008). https://doi.org/10.1149/1.2952432
  26. J. J. Han, B. K. Yu, Y. Y. Noh, Y. J. Suh, M. J. Kim, K. C. Y, M. J. Ko, and O. S. Song, Journal of Nanoscience and Nanotechnology in pressed (2013).
  27. C. Thambidurai, Y. G. Kim, and J. L. Stickney, Electrochim. Acta 53, 6157 (2008). https://doi.org/10.1016/j.electacta.2008.01.003
  28. S. H. Kwon, O. K. Kwon, J. H. Kim, H. R. Oh, K. H. Kim, and S. W. Kang, J. Electrochem. Soc. 155, H296 (2008). https://doi.org/10.1149/1.2868779
  29. L. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, and R. Yamanaka, Appl. Phys. Lett. 86, 223501 (2005). https://doi.org/10.1063/1.1940124