DOI QR코드

DOI QR Code

Synthesis of UV Curable 4,4'-Thiodibenzenethiol-based Epoxy Acrylate and Their Refractive Index Behavior

4,4'-Thiodibenzenethiol을 이용한 광경화형 에폭시 아크릴레이트 합성과 굴절률에 관한 연구

  • Baek, Seung-Suk (Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University) ;
  • Lee, Sang Won (Department of Chemical Engineering, Soongsil University) ;
  • Hwang, Seok-Ho (Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University)
  • 백승석 (단국대학교 고분자시스템공학과, 광에너지소재연구센터) ;
  • 이상원 (숭실대학교 화학공학과) ;
  • 황석호 (단국대학교 고분자시스템공학과, 광에너지소재연구센터)
  • Received : 2012.11.13
  • Accepted : 2012.11.25
  • Published : 2013.01.25

Abstract

UV-curable high refractive index di-functional epoxy acrylate, 4,4'-thiodibenzenethiol diglycidyl ether diacrylate, was synthesized from acrylic acid and 4,4'-thiodibenzenethiol diglycidyl ether that was obtained by reacting 4,4'-thiodibenzenethiol and epichlorohydrin using a direct method (Taffy process). Its chemical structure was identified by $^1H$ NMR and FTIR. After its dilution with a reactive diluent, 2-phenoxythiol ethyl acrylate as 5, 10, 15, 20, and 30 wt% content, the relationship between their viscosity and refractive index was investigated. Their degree of cure decreased with increasing the amount of reactive diluent, and the refractive index of UV-cured film increased with increasing the degree of cure.

4,4'-Thiodibenzenethiol을 기반으로 이관능 에폭시 수지인 4,4'-thiodibenzenethiol diglycidyl ether를 직접합성법으로 합성하였다. 합성된 에폭시 수지가 광경화가 가능하도록 acrylic acid와 반응시켜 광경화형 고굴절 이관능 에폭시 아크릴레이트인 4,4'-thiodibenzenethiol diglycidyl ether diacrylate를 합성하였으며 $^1H$ NMR과 FTIR을 이용하여 화학구조를 확인하였다. 이관능 에폭시 아크릴레이트와 함께 반응성 희석제인 2-phenoxythiol ethyl acrylate를 5, 10, 15, 20, 30 wt% 희석하여 점도와 굴절률과의 상관관계를 확인하였으며 광경화 후 경화필름의 굴절률 변화를 고찰 하였다. 반응성 희석제의 농도가 증가함에 따라 경화물의 경화도가 낮아졌으며, 경화도가 클수록 경화 후 굴절률은 높아지는 경향을 확인하였다.

Keywords

References

  1. H. K. Shobha, H. Johnson, M. Sankarapandian, Y. S. Kim, P. Rangarajan, D. G. Baird, and J. E. Mcgrath J. Polym. Sci. Part A: Polym. Chem., 39, 2904 (2001). https://doi.org/10.1002/pola.1270
  2. W. Groh and A. Zimmermann, Macromolecules, 24, 6660 (1991). https://doi.org/10.1021/ma00025a016
  3. A. Nebioglu, J. A. Leon, and I. V. Khudyakov, Ind. Eng. Chem. Res., 47, 2155 (2008). https://doi.org/10.1021/ie071443f
  4. D. S. Amey and T. E. Wood, U.S. Patent 6,432,526 B1 (2002).
  5. J. Wen and G. L. Wilkes, Chem. Mater., 8, 1667 (1996). https://doi.org/10.1021/cm9601143
  6. C. Decker, T. N. Viet, D. Decker, and E. Weber-Koehl, Polymer, 42, 5531 (2001). https://doi.org/10.1016/S0032-3861(01)00065-9
  7. Y. Otsubo, T. Amari, and K. Watanabe, J. Appl. Polym. Sci., 29, 4071 (1984). https://doi.org/10.1002/app.1984.070291239
  8. T. Matynia, R. Kutyla, K. Bukat, and B. Pienkowska, J. Appl. Polym. Sci., 55, 1583, (1995). https://doi.org/10.1002/app.1995.070551109
  9. M Bajpai, V. Shukla, and A. Kumar, Prog. Org. Coat., 44, 271 (2002). https://doi.org/10.1016/S0300-9440(02)00059-0
  10. T. Maruno, S. Ishibashi, and K. Nakamura, J. Polym. Sci. Part A: Polym. Chem., 32, 3211 (1994). https://doi.org/10.1002/pola.1994.080321625
  11. M. A. Ali, M. A. Khan, and K. M. I. Ali, J. Appl. Polym. Sci., 60, 879 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960509)60:6<879::AID-APP11>3.0.CO;2-S
  12. J. W. Yoo and D. S. Kim, Polymer(Korea), 23, 376 (1999).
  13. H. D. Kim, D. J. Lee, J. H. Choi, and C. C. Park, Polymer(Korea), 18, 38 (1994).
  14. K. H. Lee and B. K. Kim, Korea Polym. J., 4, 1 (1996).
  15. H. D. Kim, S. G. Kang, and C. S. Ha, J. Appl. Polym. Sci., 46, 1339 (1992). https://doi.org/10.1002/app.1992.070460803
  16. R. Bongiovanni, G. Malucelli, M. Sangermano, and A. Priola, Prog. Org. Coat., 36, 70 (1999). https://doi.org/10.1016/S0300-9440(99)00033-8
  17. W. Shi, and B. Randy, J. Appl. Polym. Sci., 51, 1129 (1994). https://doi.org/10.1002/app.1994.070510619
  18. T. R. Williams, J. Appl. Polym. Sci., 31, 1293 (1986). https://doi.org/10.1002/app.1986.070310515
  19. A. Kumar and S. K. Gupta, Reaction Engineering of Step Growth Polymerization, Plenum, New York, 1987.
  20. C. Dizman, S. Ates, L. Torun, and Y. Yagci, Beilstein J. Org. Chem., 6(56), doi:10.3762/bjoc.6.56 (2010).

Cited by

  1. Preparation and adhesion performance of transparent acrylic pressure-sensitive adhesives containing menthyl acrylate vol.73, pp.3, 2016, https://doi.org/10.1007/s00289-015-1510-5
  2. Preparation and adhesion performance of transparent acrylic pressure sensitive adhesives for touch screen panel vol.28, pp.19, 2014, https://doi.org/10.1080/01694243.2014.940664
  3. 가교제 변화에 따른 광학용 아크릴 점착제의 점착물성에 대한 연구 vol.49, pp.3, 2013, https://doi.org/10.7473/ec.2014.49.3.199
  4. The Preparation and Adhesion Performances of Transparent Acrylic Pressure Sensitive Adhesives Containing Acrylamide Monomer for Optical Applications vol.51, pp.3, 2016, https://doi.org/10.7473/ec.2016.51.3.181
  5. 소수성 UV 경화형 우레탄 아크릴레이트와 아크릴 점착제 사이의 계면 부착력 향상을 위한 에폭시 실란의 영향 vol.31, pp.2, 2020, https://doi.org/10.14478/ace.2020.1005