DOI QR코드

DOI QR Code

Thermal Behavior and Kinetics of Coal Blends during Devolatilization

탈휘발화 과정에서 혼탄의 반응률과 열적 거동에 관한 연구

  • Ryu, Kwang-Il (Energy Conversion System Lab / Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University) ;
  • Kim, Ryang-Gyoon (Energy Conversion System Lab / Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University) ;
  • Li, Dong-Fang (Energy Conversion System Lab / Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University) ;
  • Wu, Ze-Lin (Energy Conversion System Lab / Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University) ;
  • Jeon, Chung-Hwan (Energy Conversion System Lab / Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University)
  • 류광일 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터) ;
  • 김량균 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터) ;
  • 이동방 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터) ;
  • 오택림 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터) ;
  • 전충환 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터)
  • Received : 2012.09.20
  • Accepted : 2012.12.03
  • Published : 2013.02.01

Abstract

The objective of this research is to predict the TG curve of blends of bituminous coal and sub-bituminous coal during devolatilization. TSL (Thermal Shock Large) TGA was used for Experiments, and Coats-redfern method was used for reaction order calculation. Based on reaction order, sum method was verified to be suitable for a single coal, then, prediction and comparison of TG curve of coal blends was conducted using both of WSM (Weight Sum Method) and MWSM (Modified Weight Sum Method), where the latter was developed in this research. The presented experiment results and WSM & MWSM were showed to be reasonable using linear least square method. MWSM performed more accurately than WSM for the case that TG curve had different slopes and the case that sharp weight loss happened due to release of volatile matter. The results showed that it's possible to predict the thermal behavior of coal blends during devolatilization based on the thermal behavior of single coals.

본 연구 목적은 탈휘발화 과정에서의 역청탄과 아역청탄의 혼탄 열중량 곡선을 예측 하는 것이다. TSL (Thermal Shock Large) TGA를 통하여 실험을 수행 하였으며, 반응속도상수 분석은 Coats-redfern 방법을 이용하였다. 도출된 반응속도상수를 기반으로 단일탄의 Sum Method에 대한 일차적 검증을 하였으며, 혼탄시의 TG curve를 WSM(Weight Sum Method)와 저자가 제시한 MWSM (Modified Weight Sum Method)를 사용하여 예측 및 비교하였다. WSM 및 MWSM를 통한 예측결과와 TG curve 실험결과의 정량적인 비교를 위해 Linear least square method를 사용하였다. TG curve 상에서 서로 다른 기울기를 가지는 경우와 많은 휘발분의 방출로 인한 급격한 질량감소가 나타나는 구간의 경우 MWSM이 WSM 보다 실험결과에 더 정확한 결과를 예측함을 확인하였다. 탈휘발 과정에서의 혼탄의 열적 거동은 단일탄의 특성에서부터 예측할 수 있음을 확인할 수 있었다.

Keywords

References

  1. Makino, H., Ikeda, M., Morinaga, H. and Higashiyama, G., "Characteristic of Blended Combustion of Sub-bituminous Coal,"火力原子力發電(2003).
  2. Korea Elecrtic Power Coperation, "Combustion Mana Gement Practices," Korea Power Learning Institute(2005).
  3. Lee, B. H., Kim, S. G., Song, J. H., Chang, Y. J. and Jeon, C. H., "Influence of Coal Blending Methods on Unburned Carbon and NO Emissions in a Drop-Tube Furnace," Energy Fuels, 25, 5055-5062 (2011). https://doi.org/10.1021/ef200783q
  4. Solomon, P. R., Serio, M. A., Hamblen, D. G., Yu, Z-Z. and Charpenay, S., "Advances in the FG-DVC Model of Coal Devolatilization," Div. Fuel Chem., 35, 479-488(1990).
  5. Niksa, S. and Kerstein, A. R., "FLASHCHAIN Theory for Coal Devolatilization Kinetics. 1. Formulation," Energy Fuels, 5, 47- 665(1991). https://doi.org/10.1021/ef00025a006
  6. Fletcher, T. H., Kerstein, A. R., Pugmire, R. J., Solum, M. S., and Grant, D. M., "A Chemical Percolation Model for Devolatilization: 3. Chemical Structure as a function of Coal Type," Energy Fuels, 6, 414(1992). https://doi.org/10.1021/ef00034a011
  7. Badzioch, S. and Hawksley, P. G. W., "Kinetics of Thermal Decomposition of Pulverized Coal Particles," Ind. Enl. Chem. Process Des. Develop, 9, 521-530(1970).
  8. Kobayashi, H., "Kinetics of Rapid Devolatilization of Pulverized Coal," Dept. of Mechanical Engineering, Mass. Inst. Technol., Sc. D., (1976).
  9. Proony K. C. and Carl M. C., "Thermogravity Analysis of Cellulose," Polymer Chemistry, 6, 3217-233(1968). https://doi.org/10.1002/pol.1968.150061202
  10. Kim, R. G., Song, J. H., Lee, B. H., Chang, Y. J. and Jeon, C. H., "Application of a DAEM Method for a Comparison of Devoaltilization Kinetics of Imported Coals," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48, 110-115(2010).
  11. Freeman, E. S. and Carrol, J., "The Application of Thermo-analytical Techniques to Reaction Kinetics," J. Phy Chem., 62, 394- 397(1958). https://doi.org/10.1021/j150562a003
  12. Coats, A. W. and Redfern, J. P., "Kinetic Parameter from Thermogravimetric Data," J. Polym. Sci., 3, 917-920(1965). https://doi.org/10.1002/pol.1965.110031106
  13. Akinwale, O. A., Marion, C., Edson, L. M., Johannes, H. K. and Johann, F. G., "Model Fitting Kinetic Analysis and Characterisation of the Devolatilization of Coal Blends with Corn and Sugarcane Residues," Thermochim. Acta, 530, 95-106(2012). https://doi.org/10.1016/j.tca.2011.12.007
  14. Gil, M. V., Casal, D., Pevida, C., Pis, J. J. and Rubiera, F., "Thermal Behaviour and Kinetics of Coal/biomass Blends During Cocombustion," Bioresour. Technol., 101, 5601-5608(2010). https://doi.org/10.1016/j.biortech.2010.02.008
  15. Valerio, C., Luigi, P. and Leonardo, T., "Devolatilization and Pyrolysis of Refuse Derived Fuels: Characterization and Kinetic Modelling by a Thermo Gravi Metric and Calorimetric Approach," Fuel, 74(6), 903-912(1995). https://doi.org/10.1016/0016-2361(94)00018-M
  16. Vuthalura, H. B., "Investigations Into Pyrolytic Beha Viour of Coal/biomass Blends Using Thermo Gravimetric Analysis," Bioresour. Technol., 92, 187-195(2004). https://doi.org/10.1016/j.biortech.2003.08.008
  17. Heikkinen, J. M., Hordijk, J. C., De Jong, W. and Spliethoff, H., "Thermogravity as a Tool to Classify Waste Components to be Used for Energy Generation," J. Anal. Appl. Pyrolysis, 71, 883- 900(2004). https://doi.org/10.1016/j.jaap.2003.12.001
  18. Enrico, B., Federica, L., Luigi, P. and Leonardo, T., "Devolatilization Rate of Biomasses and Coal-biomass Blend: An Experimantal Investigation," Fuel, 81, 1041-1050(2002). https://doi.org/10.1016/S0016-2361(01)00204-6
  19. Prompubess, C., Mekasut, L., Piumsomboon, P. and Kuchontara, P., "Co-combustion of Coal and Biomass in a Circulating Fluidized Bed Combustor," Korean J. Chem. Eng., 24(6), 989-995(2007). https://doi.org/10.1007/s11814-007-0109-4
  20. Williams, A., Pourkashanian, M. and Jones, J. M., "The Combustion of Coal and Some Other Solid Fuels," Combustion Institude, 28, 2141-2162(2000). https://doi.org/10.1016/S0082-0784(00)80624-4
  21. Stephen, R. T., "An Introduction to Combustion : Concept and Application," (1999).
  22. Kim, R. G., Lee, B. H., Song, J. H., Chang, Y. J., Jeon, C. H., and Fletcher, T. H., "Comparison of Devolatilization of Pulverized Coals Utilized in Korean Power Plant using a DAEM Method," KISTI, 33, 613-621(2009).

Cited by

  1. Reaction Rate Analysis of Combustion for Indonesian Coal Char Applied by External/Internal Diffusion vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.133