DOI QR코드

DOI QR Code

GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR A LOGARITHMIC WAVE EQUATION ARISING FROM Q-BALL DYNAMICS

  • Han, Xiaosen (Institute of Contemporary Mathematics Henan University, School of Mathematics and Information Science Henan University)
  • Received : 2011.08.03
  • Published : 2013.01.31

Abstract

In this paper we investigate an initial boundary value problem of a logarithmic wave equation. We establish the global existence of weak solutions to the problem by using Galerkin method, logarithmic Sobolev inequality and compactness theorem.

Keywords

References

  1. J. D. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D 52 (1995), 5576-5587. https://doi.org/10.1103/PhysRevD.52.5576
  2. K. Bartkowski and P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A 41 (2008), no. 35, 355201, 11 pp. https://doi.org/10.1088/1751-8113/41/35/355201
  3. I. Bialynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 23 (1975), no. 4, 461-466.
  4. I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Physics 100 (1976), no. 1-2, 62-93. https://doi.org/10.1016/0003-4916(76)90057-9
  5. H. Buljan, A. Siber, M. Soljacic, T. Schwartz, M. Segev, and D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E (3) 68 (2003), no. 3, 036607, 6 pp. https://doi.org/10.1103/PhysRevE.68.036607
  6. T. Cazenave, Stable solutions of the logarithmic Schrodinger equation, Nonlinear Anal. 7 (1983), 1127-1140. https://doi.org/10.1016/0362-546X(83)90022-6
  7. T. Cazenave and A. Haraux, Equations d'evolution avec non-linearite logarithmique, Ann. Fac. Sci. Toulouse Math. (5) 2 (1980), no. 1, 21-51. https://doi.org/10.5802/afst.543
  8. T. Cazenave and A. Haraux, Equation de Schrodinger avec non-linearite logarithmique, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), no. 4, A253-A256.
  9. S. De Martino, M. Falanga, C. Godano, and G. Lauro, Logarithmic Schr¨odinger-like equation as a model for magma transport, Europhys. Lett. 63 (2003), no. 3, 472-475. https://doi.org/10.1209/epl/i2003-00547-6
  10. K. Enqvist and J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B 425 (1998), 309-321. https://doi.org/10.1016/S0370-2693(98)00271-8
  11. Y. Giga, S. Matsuiy, and O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity, J. Math. Fuid Mech. 3 (2001), no. 3, 302-315. https://doi.org/10.1007/PL00000973
  12. P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B 40 (2009), no. 1, 59-66.
  13. P. Gorka, Logarithmic quantum mechanics: existence of the ground state, Found. Phys. Lett. 19 (2006), no. 6, 591-601. https://doi.org/10.1007/s10702-006-1012-7
  14. P. Gorka, Convergence of logarithmic quantum mechanics to the linear one, Lett. Math. Phys. 81 (2007), no. 3, 253-264. https://doi.org/10.1007/s11005-007-0183-x
  15. P. Gorka, H. Prado, and E. G. Reyes, Functional calculus via Laplace transform and equations with infinitely many derivatives, J. Math. Phys. 51 (2010), no. 10, 103512, 10 pp. https://doi.org/10.1063/1.3496396
  16. P. Gorka, H. Prado, and E. G. Reyes, Nonlinear equations with infinitely many derivatives, Complex Anal. Oper. Theory 5 (2011), no. 1, 313-323. https://doi.org/10.1007/s11785-009-0043-z
  17. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061-1083. https://doi.org/10.2307/2373688
  18. T. Hiramatsu, M. Kawasaki, and F. Takahashi, Numerical study of Q-ball formation in gravity mediation, Journal of Cosmology and Astroparticle Physics 2010 (2010), no. 6, 008.
  19. W. Krolikowski, D. Edmundson, and O. Bang, Unified model for partially coherent solitons in logarithmically nonlinear media, Phys. Rev. E 61 (2000), 3122-3126. https://doi.org/10.1103/PhysRevE.61.3122
  20. A. Linde, Strings, textures, inflation and spectrum bending, Phys. Lett. B 284 (1992), 215-222. https://doi.org/10.1016/0370-2693(92)90423-2
  21. V. S. Vladimirov, The equation of the p-adic open string for the scalar tachyon field, Izv. Math. 69 (2005), no. 3, 487-512. https://doi.org/10.1070/IM2005v069n03ABEH000536
  22. V. S. Vladimirov and Ya. I. Volovich, Nonlinear dynamics equation in p-adic string theory, Teoret. Mat. Fiz. 138 (2004), 355-368. https://doi.org/10.4213/tmf36
  23. S. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC, Boca Raton, FL, 2004.

Cited by

  1. Existence of the global solution for fractional logarithmic Schrödinger equation 2017, https://doi.org/10.1016/j.camwa.2017.09.010
  2. Asymptotic Behavior for a Class of Logarithmic Wave Equations with Linear Damping 2017, https://doi.org/10.1007/s00245-017-9423-3
  3. Abstract Cauchy problem for weakly continuous operators vol.435, pp.1, 2016, https://doi.org/10.1016/j.jmaa.2015.10.027
  4. The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term vol.454, pp.2, 2017, https://doi.org/10.1016/j.jmaa.2017.05.030
  5. Generation of soliton-like wave packets and wave packets with linear phase modulation in gaining optical wave-guides with saturable nonlinearity vol.122, pp.5, 2017, https://doi.org/10.1134/S0030400X17050228
  6. Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term 2017, https://doi.org/10.1007/s00028-017-0392-4
  7. Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay pp.1563-504X, 2018, https://doi.org/10.1080/00036811.2018.1504029
  8. General Stability and Exponential Growth for a Class of Semi-linear Wave Equations with Logarithmic Source and Memory Terms pp.1432-0606, 2018, https://doi.org/10.1007/s00245-018-9508-7
  9. Well-posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity pp.1563-504X, 2018, https://doi.org/10.1080/00036811.2018.1484910