DOI QR코드

DOI QR Code

Impact of Environmentally-friendly Organic Agro-Materials on Chemical Properties of Remediated Soils

친환경 유기농자재 처리에 따른 정화토양의 개선 효과

  • 김동진 (전북대학교 대학원 농화학과) ;
  • 안병구 (전라북도농업기술원 기후변화대응과) ;
  • 이진호 (전북대학교 생물환경화학과)
  • Received : 2013.10.14
  • Accepted : 2013.10.30
  • Published : 2013.12.31

Abstract

Soil contamination has continuously increased worldwide, thus the remediation for the contaminated soils has risen steadily. However, the consideration of ecological safety for the remediated soils and their agricultural uses has been very limited. Therefore, this study was to investigate the influences of selected environmentally-friendly agricultural materials, organic by-product fertilizer (OF), charcoal (CC), and biochar (BC), as soil conditioners for improving poor chemical properties of fuel-oil removed soil by land farming technique. Two different remediated soils, remediated soil A (RSA) and remediated soil B (RSB), were selected. Soil texture of both RSA and RSB was sandy loam. The chemical properties of RSA and RSB were as follows: soil pHs of 8.5 and 8.7, soil organic matter contents of 7.4 and 5.5g $kg^{-1}$, total nitrogen contents of 0.26 and 0.10g $kg^{-1}$, available phosphorus concentrations of 7.2 and 4.4mg $kg^{-1}$, and exchangeable calcium concentrations of 14.8 and $11.7cmol_c$ $kg^{-1}$, respectively. Results of the properties were not reached for the optimal values for cultivating crops that were recommended by National Academy of Agricultural Science at Rural Development Administration in Korea. However, after applying OF, CC, and BC, the chemical properties of soils were selectively improved, which were that soil organic matter content and available phosphorus concentration increased, whereas the soil pH were not changed. In particular, the chemical properties were positively changed more with the application of 5.0% biochar. Thus, continuous management of the remediated soils with applying the eco-friendly agricultural materials can improve the quality of reme-diated soils.

정화토양 RSA(remediated soil A)와 RSB(remediated soil B)의 토양 특성을 조사한 결과, 사질양토로서 작물 별 토양 특성 권장 기준에 적정 토성이지만, 높은 토양 pH와 치환성 칼슘, 다소 낮은 양이온치환용량(cation exchange capacity, CEC)과 치환성 칼륨, 매우 낮은 토양유기물 함량과 유효인산 함량을 보여 작물 생육에 적합하지 않은 것으로 판단되었다. 그러나, 친환경농자재인 부산물비료, charcoal, biochar를 토양개량제로 처리 후 토양 특성이 수준 이상의 개선을 보여준 것으로 보인다. 토양 pH 경감 효과는 볼 수 없었으나, 토양유기물 함량 증가, 유효인산 함량 증가 등의 효과가 있었으며, 총질소(total nitrogen, T-N)와 치환성 칼륨의 함량이 다소 증가하였다. 그리고, 치환성 칼슘의 함량이 작물 별 권장 기준 이상으로 높은 것을 감안하였을 때 biochar 처리구에서 치환성 칼슘 함량을 감소시킨바, 지속적인 연구 또한 필요할 것으로 판단된다. 이는 토양경작법에 의하여 정화된 토양에 대하여 부산물비료, charcoal, biochar 등의 친환경농자재를 토양개량제로 사용할 경우 토양 개선 효과가 나타난 것으로 생각되며, 특히 biochar의 경우 토양 특성 변화에 많은 영향을 주었다. 따라서, 정화토양을 지속적으로 유지하고 관리 할 경우 토양의 질을 꾸준히 증진시킬 수 있을 것으로 기대된다.

Keywords

References

  1. Abrahams, P. W. 2002. Soils: their implications to human health. Sci. Total Environ. 291: 1-32. https://doi.org/10.1016/S0048-9697(01)01102-0
  2. Bell, M. J. and F. Worrall. 2011. Charcoal addition to soils in NE England: A carbon sink with environmental co-benefits?. Sci. Total Envrion. 409: 1704-1714. https://doi.org/10.1016/j.scitotenv.2011.01.031
  3. Brady, N. C. and R. R. Weil. 2003. Elements of the nature and properties of soils. (2nd ed.). Pearson, Prentice Hall, New Jersey, USA.
  4. Elgh-Dalgren, K., A. Duker, Z. Arwidsson, T. von Kronhelm, and P. A. W. van Hees. 2011. Re-cycling of remediated soil - Evaluation of leaching tests as tools for characterization. Waste Manage. 31: 215-224. https://doi.org/10.1016/j.wasman.2009.12.021
  5. Free, H. F., C. R. McGill, J. S. Rowarth, and M. G. Hedley. 2010. The effect of biochar on maize (Zea mays) germination. New Zealand J. Agric. Res. 53: 1-4. https://doi.org/10.1080/00288231003606039
  6. Gee, G. W. and J.W. Bauder. 1986. Particle size analysis, p. 383-411. In: Klute, A. Method of soil analysis part I. (2nd ed.). America Society of Agronomy, Madison, WI, USA.
  7. Grandy, A. S., G. A. Porter, and M. S. Erich. 2002. Organic amendment and rotation crop effects on the recovery of soil organic matter and aggregation in potato cropping systems. Soil Sci. Soc. Am. J. 66: 1311-1319. https://doi.org/10.2136/sssaj2002.1311
  8. Harron, W. R. A., G. R. Webster, and R. R. Cairns. 1983. Relationship between exchangeable sodium and sodium adsorption ratio in a Solonetzic soil association. Can. J. Soil Sci. 63: 461-467. https://doi.org/10.4141/cjss83-047
  9. Hong, S. H., S. M. Lee, and E. Y. Lee. 2011. Bioremediation efficiency in oil-contaminated soil using microbial agents. Korean J. Microbiol. Biotechnol. 39(3): 301-307.
  10. Hwang, K. S., Q. S. Ho, H. D. Kim, and J. H. Choi. 2002. Changes of electrical conductivity and nitrate nitrogen in soil applied with livestock manure. Korean J. Environ. Agric. 21(3): 197-201. https://doi.org/10.5338/KJEA.2002.21.3.197
  11. ISO 11466. 1995. Soil quality-extraction of trace elements soluble in aqua regia. International Organization for Standardization. Geneva, Switzerland.
  12. Jeong, K. W., and S. H. Jang. 2003. Remediation of oil contaminated soils by rice straw ash. J. Kor. Environ. Sci. Soc. 12(7): 783-789.
  13. Jones, D. L., J. Rousk, G. Edwards-Jones, T. H. DeLuca, and D. V. Murphy. 2012. Biocharmediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45: 113-124. https://doi.org/10.1016/j.soilbio.2011.10.012
  14. Jung, B. G., G. H. Ro, and N. C. Sung. 2009. Removal characteristics of TPHs and heavy metals in contaminated soil with ultrasonic washing. J. Kor. Environ. Sci. Soc. 18(4). 473-478.
  15. Jung, B. G., J. W. Choi, E. S. Yun, J. H. Yoon, Y. H. Kim, and G. B. Jung. 1998. Chemical properties of the horticultural soils in the plastic film houses in Korea. Korean J. Soil Sci. Fert. 31(1): 9-15.
  16. Kim, G. J., S. H. Lee, K. J. Park, C. K. Kim, C. H. Lee, D. S. Kim, S. H. Cho, and Y. Y. Chang. 2008. Development of low temperature thermal desorption system and remediation of soil contaminated with petroleum hydrocarbon. J. Kor. Soc. Soil Groundwater Environ. 13(4): 62-68.
  17. Kwak, M. Y. 2007. Prospect and present status of soil environmental remediation industry. J. Kor. Soc. Envrion. Eng. 35(3) : 151-164.
  18. Lee, J. H., and J. J. Doolittle. 2004. Measurement of phosphorus buffering power in various soils using desorption isotherm. Korean J. Soil Sci. Fert. 37(4): 220-227.
  19. Lee, S. B., K. M. Cho, N. H. Baik, C. H. Yang, J. H. Jung, K. J. Kim, and G. B. Lee. 2012. Effects of pig compost and liquid manure on yield, nutrients uptake of rice plant and physicochemical properties of soil. Korean J. Soil Sci. Fert. 45(5): 772-778. https://doi.org/10.7745/KJSSF.2012.45.5.772
  20. Li, Y., J. Qin, N. S. Mattson, and Y. Ao. 2013. Effect of potassium application on celery growth and cation uptake under different calcium and magnesium levels in substrate culture. Sci. Hortic. 158: 33-38. https://doi.org/10.1016/j.scienta.2013.04.025
  21. Ludwig, B., P. K. Khanna, B. Anurugsa, and H. Folster. 2001. Assessment of cation and anion exchange and pH buffering in an Amazonian Ultisol. Geoderma 102: 27-40. https://doi.org/10.1016/S0016-7061(00)00099-9
  22. Makadia, T. H., E. M. Adetutu, K. L. Simons, D. Jardine, P. J. Sheppard, and A. S. Ball. 2011. Re-use of remediated soils for the bioremediation of waste oil sludge. J. Environ. Manage. 92: 866-871. https://doi.org/10.1016/j.jenvman.2010.10.059
  23. MOE. 2012. Environmental statistics yearbook. Ministry of Environment, Korea.
  24. MOE. 2012a. Standard analytical methods for soil pollution. Ministry of Environment, Korea.
  25. MOE. 2012b. Soil environment conservation act. Ministry of Environment, Korea.
  26. NAAS. 2010. Fertilization standard on crops. National Academy of Agricultural Science, Rural Development Administration, Korea.
  27. NAAS. 2010. Methods of soil chemical analysis. National Academy of Agricultural Science, Rural Development Administration, Korea.
  28. Novak, J. M., W. J. Busscher, D. L. Larid, M. Ahmedna, D. W. Watts, and M. A. S. Niandou. 2009. Impact of biochar amendment on fertility of a Southeastern Coastal Plain soil. Soil Sci. 174: 105-112. https://doi.org/10.1097/SS.0b013e3181981d9a
  29. Oh, C. T., Y. M. Yi, Y. S. Kim, W. J. Jeon, G. J. Park, C. K. Kim, K. J. Sung, Y. Y. Chang, and G. J. Kim. 2012. Field applicability of low temperature thermal desorption equipment through environmental impact analysis of remediated soil and exhaust gas. J. Kor. Soc. Soil Groundwater Environ. 17(3): 76-85. https://doi.org/10.7857/JSGE.2012.17.3.076
  30. Oh, S. J., S. C. Kim, H. S. Yoon, H. N. Kim, T. H. Kim, K. H. Yeon, J. S. Lee, S. J. Hong, and J. E. Yang. 2011. Evaluating heavy metal stabilization efficiency of chemical amendment in agricultural field : field experiment. Korean J. Soil Sci. Fert. 44(6): 1052- 1062. https://doi.org/10.7745/KJSSF.2011.44.6.1052
  31. Omil, B., V. Pineiro, and A. Merino. 2013. Soil and tree responses to the application of wood ash containing charcoal in two soils with contrasting properties. Forest Ecol. Manag. 295: 199-212. https://doi.org/10.1016/j.foreco.2013.01.024
  32. Paudyn, K., A. Rutter, R. K. Rowe, and J. S. Poland. 2008. Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg. Sci. Technol. 53: 102-114. https://doi.org/10.1016/j.coldregions.2007.07.006
  33. Raven, K. P., and L. R. Hossner. 1993. Phosphorus desorption quantity-intensity relationships in soils. Soil Sci. Soc. Am. J. 57: 1501-1508. https://doi.org/10.2136/sssaj1993.03615995005700060018x
  34. Reynolds, C. M., M. D. Travis, W. A. Braley, and R. J. Scholze. 1994. Applying fieldexperiment bioreactors and landfarming in Alaskan climates. In: Hinchee, R. E., B. C. Alleman, R. E. Hoeppel, R. N. Miller. (Eds.), Hydrocarbon bioremediation. Lewis Publishers, Boca Raton, pp. 100-106.
  35. Tyler, G., and T. Olsson. 2001. Concentrations of 60 elements in the soil solution as related to the soil acidity. Eur. J. Soil Sci. 52: 151-165. https://doi.org/10.1046/j.1365-2389.2001.t01-1-00360.x
  36. Van Hees, P. A. W., K. Elgh-Dalgren, M. Engwall, and T. von Kronhelm. 2008. Re-cycling of remediated soil in Sweden: An environmental advantage? Resour. Conserv. Recy. 52: 1349-1361. https://doi.org/10.1016/j.resconrec.2008.07.016
  37. Wingrov, T. 1997. Diesel contamination remediation at a remote site in a cold climate. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 1(1): 30-34. https://doi.org/10.1061/(ASCE)1090-025X(1997)1:1(30)
  38. Yang, J. W., and Y. J. Lee. 2007. Status of soil remediation and technology development in Korea. Korean Chem. Eng. Res. 45(4): 311-318.
  39. Yeboah, E., P. Ofori, G. W. Quansah, E. Dugan, and S. P. Sohi. 2009. Improving soil productivity through biochar amendments to soils. African J. Environ. Sci. Technol. 3: 34-41.
  40. Yun, H. B., S. G. Han, J. S. Lee, Y. J. Lee, M. S. Kim, and Y. B. Lee. 2010. Pig manure compost and urea application effects on Chinese cabbage in different soil fertility. Korean J. Soil Sci. Fert. 43(6): 962-967.
  41. Yun, H. B., W. K. Park, S. M. Lee, S. C. Kim, and Y. B. Lee. 2009. Nitrogen uptake by Chinese cabbage and soil chemical properties as affected by successive application of chicken manure compost. Korean J. Environ. Agric. 28(1): 9-14. https://doi.org/10.5338/KJEA.2009.28.1.009