DOI QR코드

DOI QR Code

Pergola's Shading Effects on the Thermal Comfort Index in the Summer Middays

여름철 낮 그늘시렁의 차양이 온열쾌적 지표에 미치는 영향

  • Ryu, Nam-Hyong (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Lee, Chun-Seok (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology)
  • 류남형 (경남과학기술대학교 조경학과) ;
  • 이춘석 (경남과학기술대학교 조경학과)
  • Received : 2013.10.02
  • Accepted : 2013.11.22
  • Published : 2013.12.31

Abstract

This study was conducted to investigate the effects of pergola's shading on the thermal comfort index in the summer. The 3 type of pergolas($4m{\times}4m{\times}h2.7m$) which were screened overhead(I)/overhead west(II)/overhead west north(III) plane with reed blind for summer shading and winter wind break, were constructed on the 4th floor rooftop. Thereafter the meteorological variables(air temperature, humidity, radiation, and wind speed) of pergola I, III and rooftop were measured from 14 to 16 August 2013(1st experiment), those of pergola I, II and rooftop were measured from 26 to 28 August 2013(2nd experiment). The effects of pergola's shading on the radiation environment and mean radiant temperature($T_{mrt}$), standard effective temperature($SET^*$) were as follows. The maximum 1 h mean values of differences ${\Delta}$ of the sums of shortwave radiant flux densities absorbed by the human body (${\Delta}K_{abs,max}$) between pergola I, III and nearby sunny rooftop were $-119W/m^2$, $-158W/m^2$, those between pergola I, II and rooftop were $-145W/m^2$, $-159W/m^2$. The maximum 1 h mean values of differences ${\Delta}$ of the sums of long wave radiant flux densities absorbed by the human body (${\Delta}L_{abs,max}$) between pergola I, III and nearby sunny rooftop, were $-15W/m^2$, $-17W/m^2$, those between pergola I, II and nearby rooftop, were $-8W/m^2$, $-7W/m^2$. The response of the direction dependent long wave radiant flux densities $L_1$ on the pergola's shading turned out to be distinctly weaker as compared to shortwave radiant flux densities $K_1$. The pergola's shading leads to a lowering of $T_{mrt}$ and $SET^*$. The peak values of $T_{mrt}$ absorbed by the human body were decreased $16^{\circ}C$ and $21.4^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $18.8^{\circ}C$ and $20.8^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The peak values of $SET^*$ absorbed by the human body were decreased $2.9^{\circ}C$ and $2.6^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $3.5^{\circ}C$ and $2.6^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The relative $SET^*$ decrease in pergola II, III compared to nearby sunny rooftop $SET^*$ were lower than that in pergola I, revealing the influence of the wind speed. Therefore it is essential to design pergola to maximize wind speed and minimize solar radiation to achieve comfort in the hot summer. The $SET^*$ under pergola I, III were exceeded $28.7^{\circ}C$ and $30.4^{\circ}C$ which were the upper limit of thermal comfort and tolerable zone during all most daytimes in the 1st experiment(maximum air temperature $37.5^{\circ}C$). The $SET^*$ under pergola I was exceeded $28.7^{\circ}C$ which was the upper limit of thermal comfort zone at 13h, that under pergola II was exceeded $28.7^{\circ}C$ from 8h to 14h, meanwhile the $SET^*$ under pergola I, II were within thermal tolerable zone during most daytimes in the 2nd experiment(maximum air temperature $34.4^{\circ}C$). Therefore to ensure the thermal comfort of pergola for summer hottest days, pergola should be shaded with not only reed blind but also climbing and shade plants. $T_{mrt}$ and $SET^*$ were suitable index for the evaluation of pergola's shading effects and outdoors.

본 연구는 여름철 낮 그늘시렁의 차양이 온열쾌적 지표에 미치는 영향을 파악하고자 수행하였다. 이를 위해 여름철 차양 및 겨울철 방풍을 고려하여 갈대발로 천개면 등을 차폐한 3가지 유형의 그늘시렁(가로 4m${\times}$세로 4m${\times}$높이 2.7m) I(천개면 차폐) II(천개면, 서향면 차폐) III(천개면, 서향면, 북향면 차폐)을 4층 옥상에 구축하였다. 그리고 1차 실험은 2013년 8월 14일부터 16일까지 대조구, 그늘시렁 I, III을 대상으로, 2차 실험은 2013년 8월 26일부터 28일까지 대조구, 그늘시렁 I, II를 대상으로 기상변수(기온, 습도, 복사, 풍속)를 측정하였다. 그늘시렁의 차양이 인체가 흡수하는 복사환경과 $T_{mrt}$$SET^*$에 미치는 영향은 다음과 같다. 그늘시렁의 차양으로 인해 인체가 흡수한 복사량의 저감은 단파복사가 장파복사에 비해 훨씬 크게 나타났다. 대조구 대비 인체가 흡수한 단파복사량 차이의 최댓값 ${\Delta}K_{abs,max}$는 그늘시렁 I과 III에서는 $-119W/m^2$$-158W/m^2$였으며, 그늘시렁 I과 II에서는 $-145W/m^2$$-159W/m^2$였다. 대조구 대비 인체가 흡수한 장파복사량의 차이의 최댓값 ${\Delta}L_{abs,max}$는 그늘시렁 I과 III에서는 $-15W/m^2$$-17W/m^2$였으며, 그늘시렁 I과 II에서는 $-8W/m^2$$-7W/m^2$였다. 그늘시렁의 차양에 의해 인체가 흡수한 $T_{mrt}$$SET^*$ 값도 낮아졌다. $T_{mrt}$는 1차 실험에서는 그늘시렁 I과 III에서 각각 최대 $16.0^{\circ}C$$21.4^{\circ}C$, 그리고 2차 실험에서는 그늘시렁 I과 II에서 각각 최대 $18.8^{\circ}C$$20.8^{\circ}C$ 저감되었다. $SET^*$는 1차 실험에서는 그늘시렁 I과 III에서 각각 최대 $2.9^{\circ}C$$2.6^{\circ}C$ 그리고 2차 실험에서는 그늘시렁 I과 II에서 각각 최대 $3.5^{\circ}C$$2.6^{\circ}C$ 저감되었다. 대조구 $SET^*$ 대비 그늘시렁 II, III의 $SET^*$ 저감효율은 그늘시렁 I에 비해 낮게 나타났는데, 이는 풍속의 차이 때문이었다. 따라서 그늘시렁 수직면의 차폐시에는 차양 못지않게 통풍을 고려하는 것이 필수적이라 생각된다. 대조구의 3일간 평균 최고기온이 $37.5^{\circ}C$였던 1차 실험기간 결과에서는 $SET^*$ 값이 하루 중 대부분 시간대에서 온열 쾌적대 및 수용대의 상한 값인 $28.7^{\circ}C$$30.4^{\circ}C$를 초과하였다. 반면에 대조구의 3일간 평균 최고기온이 $34.4^{\circ}C$였던 2차 실험결과, $SET^*$ 값이 그늘시렁 I에서는 18~12시와 오후 14~18시, 그늘시렁 II는 15~18시에만 온열 쾌적대에 드는 것으로 나타났다. 반면에 그늘시렁 I, II에서 $SET^*$ 값은 하루 중 대부분 시간대에서 온열 수용대에 드는 것으로 나타났다. 따라서 혹서기에 그늘시렁의 온열쾌적성을 확보하기 위해서는 갈대발 등에 의한 차양뿐만 아니라, 덩굴식물이나 녹음수에 의한 차양을 도입하는 방안을 강구하여야 할 것이다. 그리고 그늘시렁의 차양효과를 평가하는 지표로서 $T_{mrt}$$SET^*$는 실효성이 있었다고 판단되며, 향후 옥외 조경공간의 온열환경 평가 지표로서 활용이 기대된다.

Keywords

References

  1. Akihiko, E. and Y. Hiroyuki(2010) Comfort Evaluation PMV. http:// mikilab.doshisha.ac.jp/dia/monthly/monthly10/20100430/aemi.pdf [in Japanese]
  2. BS EN ISO 7726, 2001, Ergonomics of Thermal Environments - Instruments for measuring physical quantities.
  3. Choi, D. H. and B. Y. Lee(2007) Analysis of passive cooling effect of membrane shading structure and the tree by field observations in the summer. J. Kor. Solar Energy Soc. 27(4): 137-146.[in Korean]
  4. Hyunjung, L., J. Holst and H. Mayer(2013) Modification of humanbiometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons advances in meteorology. Article ID 312572, 13 pages.
  5. Kaltschmitt, M., W. Streicher and A. Wiese(2007) Renewable Energy Technology, Economics and Environment. New York: Springer Berlin Heidelberg.
  6. Kántor, N. and J. Unger(2011) The most problematic variable in the course of human-biometeorological comfort assessment -the mean radiant temperature. Cent. Eur. J. Geosci. 3(1): 90-100. https://doi.org/10.2478/s13533-011-0010-x
  7. Lim, J. Y., H. K. Hwang, D. S. Song and T. Y. Kim(2008) A study on evaluation the thermal comfort in residential building block in summer. J. Kor. Inst. Architectural Sustainable Environment and Building Systems Fall Conference. pp. 110-115.[in Korean]
  8. Lim, J. Y., H. K. Hwang, M. K. Ryu and D. S. Song(2009) Thermal comfort in outdoor environment by questionnaire survey : Using the logistic regression. J. Kor. Solar Energy Soc. Spring Conference 29(1): 97-101.[in Korean]
  9. Lin, T. P., A. Matzarakis and J. J. Huang(2006) Thermal comfort and passive design strategy of bus shelters. The 23rd Conference on Passive and Low Energy Architecture.
  10. Matzarakis, A., F. Rutz and H. Mayer(2010) Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 54: 131-139. https://doi.org/10.1007/s00484-009-0261-0
  11. Meteorological Society of Japan(2010) Thermal Index. http://www. metsoc.jp/tenki/pdf/2010/ 2010_01_0057.pdf[in Japanese]
  12. Oyamada, S. and N. Tenmei(2005) Study on the human thermal sensation in the high reflection pavement. http://www.kon.arc.tcu. ac.jp/reaserch/musashi/musashi_2005/oyamada.pdf[in Japanese]
  13. Thorsson, S., F. Lindberg and B. Holmer(2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. 27: 1983-1993. https://doi.org/10.1002/joc.1537
  14. Tianyu, X,, L. Qiong, A. Mochida and M. Qinglin(2012) Study on the outdoor thermal environment and thermal comfort around campus clusters in subtropical urban areas. Building and Environment 52: 162-170. https://doi.org/10.1016/j.buildenv.2011.11.006
  15. Watanabe, S. and T. Horikoshi(2012) Calculation of mean radiant temperature in outdoors based on measurements. Japanese J. Biometeorology 49(2): 49-59.[in Japanese]
  16. ET_AEE Version1.1.12(2013. 11) http://ktlabo.cm.kyushu-u.ac.jp/e/ ETAEE.htm