DOI QR코드

DOI QR Code

A Study of Roasting Conditions on Benzo[a]pyrene Content in Coffee Beans

로스팅 정도에 따른 원두커피의 벤조피렌 함량 연구

  • Kim, Sang Eun (Dept. of Technical Research Center, Heechang Dairy Food Co. Ltd.) ;
  • Kim, Jong Hwan (Dept. of Technical Research Center, Heechang Dairy Food Co. Ltd.) ;
  • Lee, Sang Won (Dept. of Technical Research Center, Heechang Dairy Food Co. Ltd.) ;
  • Lee, Moon Jo (Dept. of Technical Research Center, Heechang Dairy Food Co. Ltd.)
  • 김상은 ((주)희창유업 기술연구소) ;
  • 김종환 ((주)희창유업 기술연구소) ;
  • 이상원 ((주)희창유업 기술연구소) ;
  • 이문조 ((주)희창유업 기술연구소)
  • Received : 2012.06.11
  • Accepted : 2012.12.20
  • Published : 2013.01.31

Abstract

Benzo[a]pyrene, a polycyclic aromatic hydrocarbon (PAH) whose metabolites are mutagenic and highly carcinogenic, is listed as a Group 1 carcinogen by the IARC. In this study, Arabica and Robusta green coffee beans were roasted under controlled conditions and the formation of benzo[a]pyrene during the roasting process was monitored. The concentration of benzo[a]pyrene in ground coffee and brewed coffee were determined by a HPLC-fluorescence detector. The limit of detection (LOD) and limit of quantitation (LOQ) of benzo(a)pyrene were 0.03 and $0.09{\mu}g/kg$, respectively. Benzo[a]pyrene was only detected in the dark roast of ground coffee, with a concentration ranging from $0.147{\sim}0.757{\mu}g/kg$. The content of benzo[a]pyrene in Ethiopia Mocha Harrar G4 is the highest ($0.757{\mu}g/kg$).

벤조피렌은 IARC에 의해 그룹 1로 분류된 다환방향족 탄화수소 유기물로서 불완전 연소 시 부산물로 발생되며 유전독성과 발암성이 강한 것으로 알려져 있다. 벤조피렌의 오염원은 매우 다양하여 환경오염 등으로 인해 조리 또는 가공과정에서 열분해 되어 생성되는 것으로 알려져 있다. 전 세계적으로 가장 널리 음용되고 있는 대표적인 기호음료인 원두커피 또한 생두를 볶는 과정에서 고온의 배전 과정을 거치는 제조공정을 감안할 때 벤조피렌이 생성될 가능성이 있어 본 연구에서는 생두의 종류와 로스팅 정도에 따른 원두커피분말과 원두커피 추출물의 색도 및 벤조피렌 함량을 조사하였다. Hunter scale의 L값과 b값은 배전이 진행될수록 감소하는 경향을 보였고 a값은 약배전 시까지는 증가하였다가 중, 강배전으로 진행될수록 감소하는 결과를 보였다. 벤조피렌의 검출한계(LOD)와 정량한계(LOQ)는 0.03과 $0.09{\mu}g/kg$이었다. 원두커피 분말의 벤조피렌 함량은 강배전의 조건에서 로스팅한 원두분말에서만 검출되었다. 생두를 강배전 조건으로 로스팅을 실시한 경우에는 $0.142{\sim}0.757{\mu}g/kg$의 함량을 보였고 중배전 및 약배전 조건의 커피분말과 원두커피 추출물 모두 불검출의 결과를 보였다. 이는 식품의약품안전청에서 식용유지에서 벤조피렌의 기준을 $2.0{\mu}g/kg$ 이하로 설정한 기준에 미치지 않는 안전한 수준이며, 원두의 로스팅 과정이 벤조피렌이 생성되는 고온에 미치지 못하고 열원방식이 직화식이 아닌 전기적인 열풍방식으로 이루어지기 때문인 것으로 판단된다.

Keywords

References

  1. Tilgner DJ, Daun H. 1969. Polycyclic aromatic hydrocarbons (polynuclears) in smoked foods. Residue Rev 27:19-41.
  2. Gunther FA, Buzzetti F. 1965. Occurrence, isolation and identification of polynuclear hydrocarbons as residues. Residue Rev 9: 90-113.
  3. Howsam M, Jones KC, Ineson P. 2000. PAHs associated with the leaves of three deciduous tree species. I - Concentrations and profiles. Environ Pollut 108: 413-424. https://doi.org/10.1016/S0269-7491(99)00195-5
  4. Hu S, Jin S, Choi D. 2008. Analysis of benzo($\alpha$)pyrene in red ginseng beverage. J Fd Hyg Safety 23: 26-30.
  5. Gelboin HV. 1980. Benzo[$\alpha$]pyrene metabolism, activation, and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol Rev 60: 1107-1166.
  6. Hecht SS. 1999. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91: 1194-1210. https://doi.org/10.1093/jnci/91.14.1194
  7. Sadikovic B, Rodenhiser DI. 2006. Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicol Appl Pharmcol 216: 458-468. https://doi.org/10.1016/j.taap.2006.06.012
  8. Dabestani R, Ivanov IN. 1999. A compilation of physical, spectroscopic and photophysical properties of polycyclic aromatic hydrocarbons. Photochem Photobiol 70: 10-34.
  9. Hu S, Oh NS, Kim SY, Lee H. 2006. Determining of polycyclic aromatic hydrocarbons in domestic vegetables and fruits. Anal Sci Technol 19: 415-421.
  10. Tao S, Cui YH, Xu FL, Li BG, Cao J, Liu WX, Schmitt G, Wang XJ, Shen WR, Qing BP, Sun R. 2004. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ 320: 11-24 https://doi.org/10.1016/S0048-9697(03)00453-4
  11. Camargo MCR, Toledo MCF. 2003. Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control 14: 49-53. https://doi.org/10.1016/S0956-7135(02)00052-X
  12. Agency for toxic substances and disease registry (ATSDR). 1995. toxicological profile for polycyclic aromatic hydrocarbons (PAHs). U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, USA.
  13. Kwon HD, Kim BJ, Ku HS, Park SH, Lee YJ, Lee MO. 2009. Study on the contents of harmful substance in the extractions of coffee bean. The Annual Report of Busan Metropolitan City Institute of Health & Environment. Vol 19, p 42-51.
  14. Houessou JK, Goujot D, Heyd B, Camel V. 2008. Modeling the formation of some polycyclic aromatic hydrocarbons during the roasting of arabica coffee samples. J Agric Food Chem 56: 3648-3656. https://doi.org/10.1021/jf073233j
  15. Garcia-Falcon MS, Cancho-Grande B, Simal-Gandara J. 2005. Minimal clean-up and rapid determination of polycyclic aromatic hydrocarbons in instant coffee. Food Chem 90: 643-647. https://doi.org/10.1016/j.foodchem.2004.03.059
  16. Houessou JK, Maloug S, Leveque AS, Delteil C, Heyd B, Camel V. 2007. Effect of roasting conditions on the polycyclic aromatic hydrocarbon content in ground arabica coffee and coffee brew. J Agric Food Chem 55: 9719-9726. https://doi.org/10.1021/jf071745s
  17. Houessou JK, Delteil C, Camel V. 2006. Investigation of sample treatment steps for the analysis of polycyclic aromatic hydrocarbons in ground coffee. J Agric Food Chem 54: 7413-7421. https://doi.org/10.1021/jf060802z
  18. Badolato ESG, Martins MS, Aued-Pimentel S, Alaburda J, Kumagai EE, Baptista GG, Rosenthal A. 2006. Sistematic study of benzo[a]pyrene in coffee samples. J Braz Chem Soc 17: 989-993. https://doi.org/10.1590/S0103-50532006000500025
  19. Jung SY, Park JS, Son YJ, Choi SJ, Kim MS, Park SH, Lee SM, Lee JI, Yu IS, Chae YZ. 2009. Determination of benzo(a)pyrene in ground coffee. Report of Seoul Metropolitan Government Research Institute of Public Health & Environment. Vol 45, p 12-20.
  20. Rhi JW, Shin HS. 1993. Antioxidative effect of brown materials extracted from roasted coffee beans. Korean J Food Sci Technol 25: 220-224.
  21. Stumpe-Visna I, Bartkevic V, Kukae A, Morozovs A. 2008. Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. Food Chem 110: 794-797. https://doi.org/10.1016/j.foodchem.2008.03.004
  22. Reinik M, Tamme T, Roasto M, Juhkam K, Tenno T, Kiis A. 2007. Polycyclic aromatic hydrocarbons (PAHs) in meat products and estimated PAH intake by children and general population in Estonia. Food Addit Contam 24: 429-437. https://doi.org/10.1080/02652030601182862

Cited by

  1. An Experimental Study on the Automation of Semi-Hot-Air Coffee Roasting Process vol.24, pp.6, 2015, https://doi.org/10.7735/ksmte.2015.24.6.687
  2. Physicochemical Properties of Supremo Coffee according to Grinding and Brewing Conditions vol.44, pp.1, 2015, https://doi.org/10.3746/jkfn.2015.44.1.089
  3. 국내 시판 레귤러 커피와 커피 크리머 첨가커피의 이화학적 특성 및 항산화력 비교 vol.27, pp.5, 2017, https://doi.org/10.17495/easdl.2017.10.27.5.540
  4. 국내 식품 중 구이, 찜, 볶음, 조림에 존재하는 수용성 비타민 B1, B2 그리고 B3 함량 조사 vol.34, pp.5, 2019, https://doi.org/10.13103/jfhs.2019.34.5.454
  5. 소형 직화식 커피 로스터 이용 시 발생하는 미세먼지 특성 연구 vol.30, pp.2, 2020, https://doi.org/10.15269/jksoeh.2020.30.2.236
  6. Effects of catechin hydrate in benzo[a]pyrene-induced lung toxicity: roles of oxidative stress, apoptosis, and DNA damage vol.31, pp.6, 2021, https://doi.org/10.1080/15376516.2021.1916667