DOI QR코드

DOI QR Code

Effect of the C/Si Molar Ratio on the Characteristics of β-SiC Powders Synthesized from TEOS and Phenol Resin

C/Si 몰 비가 TEOS와 페놀수지를 출발원료 사용하여 합성된 β-SiC 분말의 특성에 미치는 영향

  • Youm, Mi-Rae (Interfacial Control Research Center, Korea Institute of Science and Technology) ;
  • Park, Sang-Whan (Interfacial Control Research Center, Korea Institute of Science and Technology) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul)
  • 염미래 (한국과학기술연구원 계면제어연구센터) ;
  • 박상환 (한국과학기술연구원 계면제어연구센터) ;
  • 김영욱 (서울시립대학교 신소재공학과 기능성세라믹스연구실)
  • Received : 2012.10.28
  • Accepted : 2012.12.06
  • Published : 2013.01.31

Abstract

${\beta}$-SiC powders were synthesized by a carbothermal reduction process using $SiO_2$-C precursors fabricated by a sol-gel process using phenol resin and TEOS as starting materials for carbon and Si sources, respectively. The C/Si molar ratio was selected as an important parameter for synthesizing SiC powders using a sol-gel process, and the effects of the C/Si molar ratio (1.4-3.0) on the particle size, particle size distribution, and yield of the synthesized ${\beta}$-SiC powders were investigated. It was found that (1) the particle size of the synthesized ${\beta}$-SiC powders decreased with an increase in the C/Si molar ratio in the $SiO_2$-C hybrid precursors, (2) the particle size distribution widened with an increase in the C/Si molar ratio, and (3) the yield of the ${\beta}$-SiC powder production increased with an increase in the C/Si molar ratio.

Keywords

References

  1. D. K. Kim, W. J. Kim, J. E. Kang, S. G. Yoon, D. J. Kim, and J. Y. Park, "Oxidation of CVD ${\beta}$-SiC in Impurity-Controlled Helium Environment at 950(in Korean)," J. Kor. Ceram. Soc., 48 [5] 426-32 (2011). https://doi.org/10.4191/kcers.2011.48.5.426
  2. K. Y .Lim, Y.-W. Kim, I. H. Song, and J. S. Bae, "Flexural Strength of Macroporous Silicon Carbide Ceramics(in Korean)," J. Kor. Ceram. Soc., 48 [5] 360-67 (2011). https://doi.org/10.4191/kcers.2011.48.5.360
  3. J. H. Park, Y. Kim, and M. Jung, "Preparation of Porous SiC Ceramics Using Polycabosilane Derivatives as Binding Agents(in Korean)," J. Kor. Ceram. Soc., 49 [5] 412-16 (2012). https://doi.org/10.4191/kcers.2012.49.5.412
  4. Y.-W. Kim, K. Y. Lim, and K. J. Kim, "Electrical Resistivity of Silicon Carbide Ceramics Sintered with 1 wt% Aluminum Nitride and Rare Earth Oxide," J. Eur. Ceram. Soc., 32 4427-34 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.021
  5. Y. K. Byeun, R. Telle, K. S. Han, and S.W. Park, "The Effect of Phenol Resin Types and Mixing Ratios on the Synthesis of High-Purity ${\beta}$-SiC Powder by the Sol-Gel Method," Mater. Sci. Forum, 645-648 71-4 (2010). https://doi.org/10.4028/www.scientific.net/MSF.645-648.71
  6. K. J. Kim, S.H. Lee, J. H. Lee, M. H. Roh, K. Y. Lim, and Y.-W. Kim, "Structural and Optical Characteristics of Crystalline Silicon Carbide Nanoparticles Synthesized by Carbothermal Reduction," J. Am. Ceram. Soc., 92 [2] 424-28 (2009). https://doi.org/10.1111/j.1551-2916.2008.02913.x
  7. R. Kok and S. V. Cattamanchi, "Synthesis of Beta Silicon Carbide Powders Using Carbon Coated Fumed Silica," J. Mater. Sci., 33 [10] 2537-49 (1998). https://doi.org/10.1023/A:1004392900267
  8. D. K. Kim, S. Park, K. Cho, and H. B. Lee, "Synthesis of SiC by Self-Propagating High Temperature Synthesis Chemical Furnace(in Korean)," J. Kor. Ceram. Soc., 31 [11] 1283-92 (1994).
  9. C. Y Shin, H. I, Won, H. Nersisyan, and C. W. Won, "The Investigation of Reaction Parameters on the Recativity in the Preparation of SiC by SHS(in Korean)," J. Kor. Ceram. Soc., 43 [7] 427-32 (2006). https://doi.org/10.4191/KCERS.2006.43.7.427
  10. S. M. Ko, S. M. Koo, J. H. Kim, J. H. Kim, M. S. Byeon, and K. T. Hwang, "Synthesis of SiC Nano-powder from TEOS by RF Induction Thermal Plasma(in Korean)," J. Kor. Ceram. Soc., 48 [1] 1-5 (2011). https://doi.org/10.4191/KCERS.2011.48.1.001
  11. P. D. Ramesh, B. Vaidyanathan, M. Ganguli, and K .J. Rao, "Synthesis of ${\beta}$-SiC Powder by Use of Microwave Radiation," J. Mater. Res., 9 [12] 3025-27 (1994). https://doi.org/10.1557/JMR.1994.3025
  12. L. N. Satapathy, P. D. Ramesh, D. Agrawal, and R. Roy, "Microwave Synthesis of Phase-Pure, Fine Silicon Carbide Powder," Mater. Res. Bull., 40 1871-82 (2005). https://doi.org/10.1016/j.materresbull.2005.04.034
  13. J. Li, J. Tian, and L. Dong, "Synthesis of SiC Precursors by a Two-Step Sol-Gel Process and their Conversion to SiC Powders," J. Eur. Ceram. Soc., 20 [11] 1853-57 (2005).
  14. J. M. Qian, J. P. Wang, G. J. Qian, and Z. H. Jin, "Preparation of Porous SiC Ceramic with a Woodlike Microstructure by Sol-Gel and Carbothermal Reduction Processing," J. Eur. Ceram. Soc., 24 [10-11] 3251-59 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.10.042
  15. V. Raman, G. Bhatia, S. Bhardwaj, A. K. Strivastva, and K. N. Sood, "Synthesis of Silicon Carbide Nanofibers by Sol-Gel and Polymer Blend Techniques," J. Mater, Sci., 40 [6] 1521-27 (2005). https://doi.org/10.1007/s10853-005-0596-9
  16. G. M. Kim, G. S. Cho, and S. W. Park, "Effects of ${\beta}$-SiC Particle Seeds on Morphology and Size of High Purity ${\beta}$-SiC Powder Synthesized Using Sol-Gel Process(in Korean)," J. Kor. Ceram. Soc., 46 [5] 528-33 (2009). https://doi.org/10.4191/KCERS.2009.46.5.528
  17. S. Kavecky, B, Janekova, J. Madejova, and P. Sajgalik, "Silicon Carbide Powder Synthesis by Chemical Vapour Deposition from Silane/Acetylene Reaction System," J. Eur. Ceram. Soc., 20 [12] 1939-46 (2000). https://doi.org/10.1016/S0955-2219(00)00071-6
  18. H. S. Yang, O. H. Kwon, J. D. Lee, J. S. Rho, and Y. H. Kim, "Preparation of Silica Sol by Partial Hydrolysis of TEOS and High Purity Silica Glass Fiber," J. Kor. Ind. Eng. Chem., 7 [5] 823-31 (1996).
  19. R. Yao, Z. Feng, Y. Yu, S. Li, L. Chen, and Y. Zhang, "Synthesis and Characterization of Continuous Free Standing Silicon Carbide Films with Polycarbosilane (PCS)," J. Eur. Ceram. Soc., 29 [10] 2079-85 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.11.019
  20. R. Sharma, D. V. Sridhara Rao, and V. D. Vankar, "Growth of Nanocrystalline-Silicon Carbide and Nanocrystalline Silicon Oxide Nanoparticles by Sol Gel Technique," Mater. Lett., 62 3174-77 (2008). https://doi.org/10.1016/j.matlet.2008.02.051

Cited by

  1. -C Hybrid Precursor Fabricated by a Sol-gel Process vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.402
  2. How xerogel carbonization conditions affect the reactivity of highly disperse SiO2–C composites in the sol–gel synthesis of nanocrystalline silicon carbide vol.61, pp.11, 2016, https://doi.org/10.1134/S0036023616110206