DOI QR코드

DOI QR Code

Effect of Carbonization Temperature on the Thermal Conductivity and Electric Properties of Carbonized Boards

탄화온도가 탄화보드의 열전도율 및 전기적 성질에 미치는 영향

  • Oh, Seung-Won (Dept. of Wood Science and Technology, Chonbuk National University) ;
  • Park, Sang-Bum (Dept. of Forest Products, Korea Forest Research Institute) ;
  • Kim, Jong-In (Dept. of Forest Products, Korea Forest Research Institute) ;
  • Hwang, Jung-Woo (Dept. of Wood Science and Technology, Chonbuk National University)
  • 오승원 (전북대학교 목재응용과학과) ;
  • 박상범 (국립산림과학원 임산공학부) ;
  • 김종인 (국립산림과학원 임산공학부) ;
  • 황정우 (전북대학교 목재응용과학과)
  • Received : 2012.12.04
  • Accepted : 2013.01.22
  • Published : 2013.01.25

Abstract

This study is a basic research for practical applications of carbonized boards, which measured thermal conductivity and electrical properties of carbonized boards manufactured at different carbonization temperature ($400{\sim}1,100^{\circ}C$) using a medium density fiberboard, particleboard, plywood and wood (Fraxinus rhynchophylla). The highest value of thermal conductivity was 0.1326 m/k at carbonization temperature of $900^{\circ}C$ in the carbonized particleboard. Overall, the higher density of carbonized board, thermal conductivity was faster. As the electrical resistivity decreased with increased carbonization temperature, it was almost close to conductor after carbonization temperature of $1,000^{\circ}C$. When electricity has worked on the carbonized board by high voltage, the current and the electric power increased and surface temperature of carbonized board was high.

탄화보드의 실용화를 위한 기초연구로 중밀도섬유판, 파티클보드, 합판 및 물푸레나무 목재를 $400{\sim}1,100^{\circ}C$로 탄화하여 탄화온도에 따른 열전도율 및 전기적 성질을 측정하였다. 열전도율은 탄화 파티클보드의 탄화온도가 $900^{\circ}C$일 때 0.1326 m/k로 가장 우수하였으며, 전반적으로 탄화보드의 밀도가 클수록 열전도율이 빨랐다. 비저항값은 탄화온도가 높을수록 감소하여 탄화온도 $1,000^{\circ}C$ 이후에는 거의 도체에 가까운 값을 나타냈다. 높은 전압으로 탄화보드에 전기를 통했을 때 전류와 전력은 증가하였으며 표면온도가 높았다.

Keywords

References

  1. 강춘원 등. 2008. 목재물리 및 역학. p. 118.
  2. 박상범. 2007. 목질패널류를 이용한 유해 VOC 흡착 패널 및 그 제조방법. 특허 제 10-0776545.
  3. 박상범. 2008. 전자파차폐용 목질계 탄화보드 개발. 숯과 목초액 28: 16-26.
  4. 박상범 등. 2008. 목질제품의 VOC 평가 및 개선. 국립 산림과학원 연구보고 08-20-264-396.
  5. 박상범, 이상민, 박종영, 이선화. 2009. 섬유판을 이용한 무할렬 탄화보드 제조. 목재공학 37(4): 293-299.
  6. 오승원. 2004. 간벌재를 이용한 기능성 woodceramics 발열판 제조기술개발. 농림부 최종연구보고서: 109-110.
  7. 오승원. 2007. 통전한 우드세라믹의 전기적 성질. 목재 공학 35(4): 9-13.
  8. 오승원, Okabe, T. and T. Hirose. 2000. 삼나무 간벌재로 제조된 우드세라믹의 전기적 성질. 한국가구학회지 11(1): 31-36.
  9. 이선화, 박상범, 권성민, 박종영, 김남훈. 2009. 주사전자 현미경 및 X선 회절법에 의한 탄화 MDF의 특성. 목재 공학 37(3): 208-215.
  10. 차정훈, 서정기, 김수민. 2011. 목질마루바닥재와 벽채용 재료를 이용한 평판열류계법과 MTPS (Modified Transient Plane Source)법의 열전도율 상관관계분석. 한국가구학회지 22(2): 118-125.
  11. Nonaka, K., M. Fushitani, T. Hirose, and T. Okabe. 1999. Thermal conductivity of woodceramics. Proceeding of 11th MRS-J annual meeting. Session 1. New Plant Materials. pp. 98-101.
  12. Shibata, k., T. Okabe, K. Satio, T. kayama, M. Shimada, A. yamamura, and R. yamamoto. 1997. Electromagnetic shielding properties of woodceramics made from wastepaper. Journal of Porous Materials 4: 269-275. https://doi.org/10.1023/A:1009625322670
  13. Suda, T., N. Kondo, T. Okabe, and K. Saito. 1999. Electrical properties of woodceramics. Journal of Porous Materials 6: 255-258. https://doi.org/10.1023/A:1009644316468