DOI QR코드

DOI QR Code

Preparation of WO3-TiO2 Photocatalyst and Evaluation of Its Photo-activity in the Visible Light Range

가시광 활성 WO3-TiO2 복합체 광촉매의 제조 및 이의 특성 평가

  • Yeo, In-Chul (Department of Mechanical Engineering, Incheon University) ;
  • Kang, In-Cheol (Technology Convergence Center, IncheonTechnopark)
  • 여인철 (인천대학교, 기계시스템 공학부) ;
  • 강인철 ((재)인천테크노파크, 융복합산업지원센터)
  • Received : 2013.12.02
  • Accepted : 2013.12.16
  • Published : 2013.12.28

Abstract

The most general photocatalyst, $TiO_2$ and $WO_3$, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with $TiO_2$ and $WO_3$. In the $TiO_2-WO_3$ composite, $WO_3$ absorbs visible light creating excited electrons and holes while some of the excited electrons move to $TiO_2$ and the holes remain in $WO_3$. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of $TiO_2-WO_3$ composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of $TiO_2(4)$ and $WO_3(6)$ shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.

Keywords

References

  1. J. A. Turner: Science, 305 (2004) 972. https://doi.org/10.1126/science.1103197
  2. C. Khare, K. Sliozberg, R. Meyer, A. Savan, W. Schuhmann and A. Ludwig: www.elsevier.com/locate/he(international).
  3. A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey and M. D. Horne: Int. J. Hydrogen Energy, 31 (2006) 1999. https://doi.org/10.1016/j.ijhydene.2006.01.014
  4. R. V. D. Krol, Y. Q. Liang and J. Schoonman: J. Mater. Chem., 18 (2008) 2311. https://doi.org/10.1039/b718969a
  5. J. F. Wager: Thin Solid Films, 516 (2008) 1755. https://doi.org/10.1016/j.tsf.2007.06.164
  6. J. Sa, M. Fernandez-Garcia and J. A. Anderson: Catal. Commun., 9 (2008) 1991. https://doi.org/10.1016/j.catcom.2008.03.041
  7. I. C. Kang, Q. Zhang, J. Kano, S. Yin, T. Sato and F. Saito: J. Photochem. Photobiol. A: Chem., 189 (2007) 232. https://doi.org/10.1016/j.jphotochem.2007.02.003
  8. I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Appl. Catal. B: Environmental, 80 (2008) 81. https://doi.org/10.1016/j.apcatb.2007.11.005
  9. M. Anpo and M. Takeuchi: J. Catal., 216 (2003) 505. https://doi.org/10.1016/S0021-9517(02)00104-5
  10. I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Environ. Sci. Technol., 42 (2008) 3622. https://doi.org/10.1021/es702932m
  11. T. Ohno, K. Tokieda, S. Higashida and M. Matsumura: Appl. Catal. A; General, 244 (2003) 383. https://doi.org/10.1016/S0926-860X(02)00610-5
  12. V. Puddu, R. Mokaya and G. L. Puma: Chem. Commun., 45 (2007) 4749.
  13. W. Smith, A. Wolcott, R.C. Fitzmorris, J. Z. Zhang and Y. P. Zhao: J. Mater. Chem., 21 (2011) 10792. https://doi.org/10.1039/c1jm11629k
  14. X. Z. Li, F. B. Li, C. L. Yang and W. K. Ge: J. Photochem. Photobiol. A, 141 (2001) 209. https://doi.org/10.1016/S1010-6030(01)00446-4
  15. C. H. Li, Y. H. Hsieh, W. T. Chiu, C. C. Liu and C. L. Kao: Separation and Purification Techno., 58 (2007) 148. https://doi.org/10.1016/j.seppur.2007.07.013
  16. I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides and P. Falaras: Appl. Catal. B: Environ., 42 (2003) 187. https://doi.org/10.1016/S0926-3373(02)00233-3

Cited by

  1. Photocatalytic activity of rutile TiO2 powders coupled with anatase TiO2 nanoparticles using surfactant vol.25, pp.3, 2018, https://doi.org/10.4150/KPMI.2018.25.3.257
  2. Synthesis and Characterization of TiO2/CuS Nanocomposite Fibers as a Visible Light-Driven Photocatalyst vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.05