DOI QR코드

DOI QR Code

$TiO_2$ photocatalyst for water treatment applications

  • Received : 2013.06.17
  • Accepted : 2013.07.03
  • Published : 2013.11.25

Abstract

Recently, many water treatment technologies, such as biological treatment, coagulation/precipitation techniques, Fenton oxidation treatments, and advanced oxidation techniques, have been assessed to address the worsening clean water shortage. This review summarizes these technologies and provides the background and principle of photocatalysis for advanced oxidation technology. In particular, this paper focuses on semiconductor $TiO_2$ photocatalysts as well as the latest modifications of $TiO_2$ photocatalyst, such as the introduction of metals or heteroatoms onto $TiO_2$, physical modification of $TiO_2$ for a variety of morphologies, and hybrid $TiO_2$/nanocarbon composites, to improve the photocataytic activities for an advanced oxidation process. This review provides useful information to scientists and engineers in this field.

Keywords

Acknowledgement

Grant : GAIA project

Supported by : Korea Ministry of Environment

References

  1. J. Tollefson, Nature 473 (2011) 134. https://doi.org/10.1038/473134a
  2. M. Rodell, I. Velicogna, J.S. Famiglietti, Nature 460 (2009) 999. https://doi.org/10.1038/nature08238
  3. S.D. Richardson, Analytical Chemistry 84 (2012) 747. https://doi.org/10.1021/ac202903d
  4. Stockholm Convention (2011) http://chm.pops.int/Home/tabid/2121/language/ en-GB/Default.aspx.
  5. L. Carlsen, R. Bruggemann, Y. Sailaukhanuly, Ecological Indicators 29 (2013) 191. https://doi.org/10.1016/j.ecolind.2012.12.028
  6. M. Heikkinen, H. Poutiainen, M. Liukkonen, T. Heikkinen, Y. Hiltunen, Mathematics and Computers in Simulation 82 (2011) 450. https://doi.org/10.1016/j.matcom.2010.10.021
  7. A. Biati, F. Moattar, A.R. Karbassi, A.H. Hassani, International Journal of Environ- mental Research 4 (2010) 177.
  8. L. Tajeddine, M. Nemmaoui, H. Mountacer, A. Dahchour, M. Sarakha, Environ- mental Chemical Letters 8 (2010) 123. https://doi.org/10.1007/s10311-008-0198-2
  9. L. Liberatore, M. Bressan, C. Belli, G. Lustrato, G. Ranalli, Water, Air and Soil Pollution 223 (2012) 4751. https://doi.org/10.1007/s11270-012-1230-5
  10. M.M. Ballesteros Martin, J.A. Sanchez Perez, J.L. Casas Lopez, I. Oller, S. Malato Rodriguez, Water Research 43 (2009) 653. https://doi.org/10.1016/j.watres.2008.11.020
  11. M. Bressan, L. Liberatore, N. D'Alessandro, L. Tonucci, C. Belli, G. Ranalli, Journal of Agricultural and Food Chemistry 52 (2004) 1228. https://doi.org/10.1021/jf035128p
  12. M.S. Tahir, M. Saleem, S.R. Malik, J.R. Khan, M. Siebenhofer, Chemical Engineering and Processing: Process Intensification 52 (2012) 16. https://doi.org/10.1016/j.cep.2011.12.006
  13. A.M. Ferreira, M. Marchesiello, P.X. Thivel, Separation and Purification Technology 107 (2013) 109. https://doi.org/10.1016/j.seppur.2013.01.016
  14. L.B. Mansour, I. Kesentini, Journal of Hazardous Materials 153 (2008) 1067. https://doi.org/10.1016/j.jhazmat.2007.09.061
  15. O. Hanay, H. Hasar, Journal of Hazardous Materials 189 (2011) 572. https://doi.org/10.1016/j.jhazmat.2011.02.073
  16. G. Centi, S. Perathoner, T. Torre, M.G. Verdone, Catalysis Today 55 (2000) 61. https://doi.org/10.1016/S0920-5861(99)00226-6
  17. P. Ghosh, A.N. Samanta, S. Ray, Desalination 266 (2011) 213. https://doi.org/10.1016/j.desal.2010.08.029
  18. S.H. Lin, C.C. Chang, Water Research 34 (2000) 4243. https://doi.org/10.1016/S0043-1354(00)00185-8
  19. O.B. Ayodele, B.H. Hameed, Journal of Industrial and Engineering Chemistry 19 (2013) 966. https://doi.org/10.1016/j.jiec.2012.11.018
  20. J.M. Monteagudo, A. Duran, I.S. Martin, M. Aguirre, Applied Catalysis B: Environmental 96 (2010) 486. https://doi.org/10.1016/j.apcatb.2010.03.009
  21. R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Materials Science Forum 734 (2013) 247.
  22. R.C. Martins, R.M. Quinta-Ferreira, Chemical Engineering Science 66 (2011) 3243. https://doi.org/10.1016/j.ces.2011.02.023
  23. W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Nature Communications 4 (2013) 1.
  24. L.G. Devi, R. Kavitha, Applied Catalysis B: Environmental 140-141 (2013) 559. https://doi.org/10.1016/j.apcatb.2013.04.035
  25. B. Kasprzyk-Hordern, M. Ziolek, J. Nawrocki, Applied Catalysis B: Environmental 46 (2003) 639. https://doi.org/10.1016/S0926-3373(03)00326-6
  26. S.S.A. Amr, H.A. Aziz, M.N. Adian, S.Q. Aziz, Clean-Soil Air Water 41 (2013) 148. https://doi.org/10.1002/clen.201200005
  27. S. Jagadevan, N.J. Graham, I.P. Thompson, Journal of Hazardous Materials 244- 245 (2013) 394. https://doi.org/10.1016/j.jhazmat.2012.10.071
  28. N.K.V. Leitner, B. Roshani, Water Research 44 (2010) 2058. https://doi.org/10.1016/j.watres.2009.12.018
  29. G. Zhen, X. Lu, B. Wang, Y. Zhao, X. Chai, D. Niu, A. Zhao, Y. Li, Y. Song, X. Cao, Bioresource Technology 124 (2012) 29. https://doi.org/10.1016/j.biortech.2012.08.039
  30. I. Nitoi, T. Oncescu, P. Oancea, Journal of Industrial and Engineering Chemistry 19 (2013) 305. https://doi.org/10.1016/j.jiec.2012.08.016
  31. O.B. Ayodele, B.H. Hameed, Journal of Industrial and Engineering Chemistry 19 (2013) 966. https://doi.org/10.1016/j.jiec.2012.11.018
  32. G. Tezcanli-Guyer, N.H. Ince, Ultrasonics Sonochemistry 10 (2003) 235. https://doi.org/10.1016/S1350-4177(03)00089-0
  33. D.C. Seo, H.J. Lee, H.N. Hwang, M.R. Park, N.W. Kwak, I.J. Cho, J.S. Cho, J.Y. Seo, W.H. Joo, K.H. Park, J.S. Heo, Water Science and Technology 55 (2007) 251. https://doi.org/10.2166/wst.2007.009
  34. Y. Chen, Z. Ai, L. Zhang, Journal of Hazardous Materials 235-236 (2012) 92. https://doi.org/10.1016/j.jhazmat.2012.07.015
  35. W. Tao, J. Chang, D. Wu, Z. Gao, X. Duan, F. Xu, K. Jiang, Materials Research Bulletin 48 (2013) 538. https://doi.org/10.1016/j.materresbull.2012.11.053
  36. T. Ghosh, K.Y. Cho, K. Ullah, V. Nikam, C.Y. Park, Z.D. Meng, W.C. Oh, Journal of Industrial and Engineering Chemistry 19 (2013) 797. https://doi.org/10.1016/j.jiec.2012.10.020
  37. J. Zhang, K.H. Lee, L. Cui, T.S. Jeong, Journal of Industrial and Engineering Chemistry 15 (2009) 185. https://doi.org/10.1016/j.jiec.2008.09.014
  38. S.C. Kwon, J.Y. Kim, S.M. Yoon, W. Bae, K.S. Kang, Y.W. Rhee, Journal of Industrial and Engineering Chemistry 18 (2012) 1951. https://doi.org/10.1016/j.jiec.2012.05.010
  39. Z. Li, S. Yuan, C. Qiu, Y. Wang, X. Pan, J. Wang, C. Wang, J. Zuo, Electrochmica Acta 102 (2013) 174. https://doi.org/10.1016/j.electacta.2013.04.034
  40. J.M. Abdul, M. Kumar, S. Vigneswaran, J. Kandasamy, Journal of Industrial and Engineering Chemistry 19 (2013) 137. https://doi.org/10.1016/j.jiec.2012.07.015
  41. S. Sabhi, J. Kiwi, Water Research 35 (2001) 1994. https://doi.org/10.1016/S0043-1354(00)00460-7
  42. D. Tabet, M. Saidi, M. Houari, P. Pichat, H. Khalaf, Journal of Environmental Engineering 80 (2006) 342.
  43. H.J. Jung, J.S. Hong, J.K. Suh, Journal of Industrial and Engineering Chemistry 19 (2013) 1325. https://doi.org/10.1016/j.jiec.2012.12.036
  44. S. Sahinkaya, Journal of Industrial and Engineering Chemistry 19 (2013) 601. https://doi.org/10.1016/j.jiec.2012.09.023
  45. G. Muthuraman, I.S. Moon, Journal of Industrial and Engineering Chemistry 18 (2012) 1540. https://doi.org/10.1016/j.jiec.2012.03.021
  46. J. Yu, X. Yu, Environmental Science and Technology 42 (2008) 4902. https://doi.org/10.1021/es800036n
  47. J.L. Lyons, A. Janotti, C.G. van de Walle, Semiconductors and Semimetals 88 (2013) 1. https://doi.org/10.1016/B978-0-12-396489-2.00001-1
  48. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 288 (1997) 431.
  49. A. Nottrott, J. Kleissl, B. Washom, Renewable Energy 55 (2013) 230. https://doi.org/10.1016/j.renene.2012.12.036
  50. N.S. Lewis, Science 315 (2007) 798. https://doi.org/10.1126/science.1137014
  51. S. Bouadila, S. Kooli, M. Lazaar, S. Skouri, A. Farhat, Applied Energy 110 (2013) 267. https://doi.org/10.1016/j.apenergy.2013.04.062
  52. Y. Shavisi, S. Sharifnia, S.N. Hosseini, M.A. Khadivi, Journal of Industrial and Engineering Chemistry (2013), in press.
  53. M. Formenti, F. Juillet, P. Meriaudeau, S.J. Teichner, Physics in Technology 1 (1971) 680.
  54. A. Fujishima, K. Honda, Nature 238 (1972) 37. https://doi.org/10.1038/238037a0
  55. S. Kim, M. Kang, Journal of Industrial and Engineering Chemistry 18 (2012) 969. https://doi.org/10.1016/j.jiec.2011.10.009
  56. Y. Moriya, T. Takata, K. Domen, Coordination Chemistry Reviews 257 (2013) 1957. https://doi.org/10.1016/j.ccr.2013.01.021
  57. J. Mo, Y. Zhang, Q. Xu, J.J. Lamson, R. Zhao, Atmospheric Environment 43 (2009) 2229. https://doi.org/10.1016/j.atmosenv.2009.01.034
  58. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chemical Review 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  59. C.K. Lee, International Journal of Electrochemical Science 7 (2012) 12941.
  60. R. Wang, K. Hashimoto, A. Fujishima, Nature 388 (1997) 432. https://doi.org/10.1038/41237
  61. K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, A. Fujishima, Langmuir 27 (2011) 3275. https://doi.org/10.1021/la200438p
  62. K. Katsumata, S. Okazaki, C.E.J. Cordonier, T. Shichi, T. Sasaki, A. Fujishima, ACS Applied Materials and Interfaces 2 (2010) 1236. https://doi.org/10.1021/am100091f
  63. T. Shichi, K. Katsumata, Journal of the Surface Finishing Society of Japan 61 (2010) 30. https://doi.org/10.4139/sfj.61.30
  64. H.R. Pant, D.R. Pandeya, K.T. Nam, W.I. Baek, S.T. Hong, H.Y. Kim, Journal of Hazardous Materials 189 (2011) 465. https://doi.org/10.1016/j.jhazmat.2011.02.062
  65. J.Y. Choi, K.H. Kim, K.C. Choy, K.T. Oh, K.N. Kim, Journal of Biomedical Materials Research Part B: Applied Biomaterials 80B (2006) 353.
  66. A. Fujishima, X. Zhang, D.A. Tryk, Surface Science Reports 63 (2008) 515. https://doi.org/10.1016/j.surfrep.2008.10.001
  67. J.G. Yu, H.G. Yu, B. Cheng, B.X.J. Zhao, J.C. Yu, W.K. Ho, Journal of Physical Chemistry B 107 (2003) 13871. https://doi.org/10.1021/jp036158y
  68. L. Zhang, J.C. Yu, Chemical Communications (2003) 2078-2079.
  69. M.F. Mutzhas, E. Holzle, C. Hofmann, G. Plewig, Journal of Investigative Dermatology 76 (1981) 42. https://doi.org/10.1111/1523-1747.ep12524813
  70. X. Chen, S.S. Mao, Chemical Review 107 (2007) 2891. https://doi.org/10.1021/cr0500535
  71. M.D. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado, Energy and Environmental Science 2 (2009) 1231. https://doi.org/10.1039/b907933e
  72. K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Electrochemistry Communications 2 (2000) 207. https://doi.org/10.1016/S1388-2481(00)00006-0
  73. Q. Xiang, J. Yu, P.K. Wong, Journal of Colloid and Interface Science 357 (2011) 163. https://doi.org/10.1016/j.jcis.2011.01.093
  74. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Research 44 (2010) 2997. https://doi.org/10.1016/j.watres.2010.02.039
  75. C. Liu, Z. Lei, Y. Yang, H. Wang, Z. Zhang, Bioresource Technology 137 (2013) 57. https://doi.org/10.1016/j.biortech.2013.03.071
  76. L. Pinho, M.J. Mosquera, Applied Catalysis B: Environmental 134-135 (2013) 205. https://doi.org/10.1016/j.apcatb.2013.01.021
  77. S. Zhou, X. Ding, L. Wu, Progress in Organic Coatings 76 (2013) 563. https://doi.org/10.1016/j.porgcoat.2012.11.013
  78. Z. Huang, P. Zhong, C. Wang, X. Zhang, ACS Applied Materials and Interfaces 5 (2013) 1961. https://doi.org/10.1021/am3027458
  79. S. Koide, T. Nonami, Food Control 18 (2007) 1. https://doi.org/10.1016/j.foodcont.2005.08.001
  80. E.A. Rozhkova, I. Ulasov, B. Lai, N.M. Dimitrijevic, M.S. Lesniak, T. Rajh, Nano Letters 9 (2009) 3337. https://doi.org/10.1021/nl901610f
  81. S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Catalysis Today 147 (2009) 1. https://doi.org/10.1016/j.cattod.2009.06.018
  82. S. Malato, J. Blanco, A. Vidal, C. Richter, Applied Catalysis B: Environmental 37 (2002) 1. https://doi.org/10.1016/S0926-3373(01)00315-0
  83. C. Wang, H. Shi, Y. Li, Applied Surface Science 357 (2011) 6873.
  84. M. Takeuchi, J. Deguchi, M. Hidaka, S. Sakai, K. Woo, P.P. Choi, J.K. Park, M. Anpo, Applied Catalysis B: Environmental 89 (2009) 406. https://doi.org/10.1016/j.apcatb.2008.12.022
  85. M. Mahalakshmi, S. Vishnu Priya, Banumathi Arabindoo, M. Palanichamy, V. Murugesan, Journal of Hazardous Materials 161 (2009) 336. https://doi.org/10.1016/j.jhazmat.2008.03.098
  86. Y. Yao, T. Ochiai, H. Ishiguro, R. Nakano, Y. Kubota, Applied Catalysis B: Environmental 106 (2011) 592. https://doi.org/10.1016/j.apcatb.2011.06.020
  87. D.S. Tsoukleris, T. Maggos, C. Vassilakos, P. Falaras, Catalysis Today 129 (2007) 96. https://doi.org/10.1016/j.cattod.2007.06.047
  88. A.R. Khataee, M. Fathinia, S. Aber, M. Zarei, Journal of Hazardous Materials 181 (2010) 886. https://doi.org/10.1016/j.jhazmat.2010.05.096
  89. B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, Journal of Hazardous Materials 89 (2002) 303. https://doi.org/10.1016/S0304-3894(01)00329-6
  90. M. Anpo, M. Takeuchi, Journal of Catalysis 216 (2003) 505. https://doi.org/10.1016/S0021-9517(02)00104-5
  91. B. Sun, A.V. Vorontsov, P.G. Smirniotis, Langmuir 19 (2003) 3151. https://doi.org/10.1021/la0264670
  92. T. Ochiai, T. Fukuda, K. Nakata, T. Murakami, D. Tryk, Y. Koide, A. Fujishima, Journal of Applied Electrochemistry 40 (2010) 1737. https://doi.org/10.1007/s10800-010-0133-7
  93. P. Fu, P. Zhang, J. Li, Applied Catalysis B: Environmental 105 (2011) 220. https://doi.org/10.1016/j.apcatb.2011.04.021
  94. J. Thomas, M. Yoon, Applied Catalysis B: Environmental 111-112 (2012) 502. https://doi.org/10.1016/j.apcatb.2011.10.039
  95. S. KrejcIkova, L. Matejova, K. KocI, L. Obalova, Z. Matej, L. Capek, O. Solcova, Applied Catalysis B: Environmental 111-112 (2012) 119. https://doi.org/10.1016/j.apcatb.2011.09.024
  96. C.M. Wang, A. Heller, H. Gerischer, Journal of the American Chemical Society 114 (1992) 5230. https://doi.org/10.1021/ja00039a039
  97. Y. Yao, Y. Ohko, Y. Sekiguchi, A. Fujishima, Y. Kubota, Journal of Biomedical Materials Research Part B: Applied Biomaterials 85B (2008) 453. https://doi.org/10.1002/jbm.b.30965
  98. D. Wu, H. You, D. Jin, X. Li, Journal of Photochemistry and Photobiology A: Chemistry 217 (2011) 177. https://doi.org/10.1016/j.jphotochem.2010.10.006
  99. J. Yu, J. Xiong, B. Cheng, S. Liu, Applied Catalysis B: Environmental 60 (2005) 211. https://doi.org/10.1016/j.apcatb.2005.03.009
  100. F.D. Angelis, S. Fantacci, A. Selloni, M.K. Nazeeruddin, M. Gratzel, Journal of the American Chemical Society 129 (2007) 14156. https://doi.org/10.1021/ja076293e
  101. T. Morikawa, T. Ohwaki, K. Suzuki, S. Moribe, S.T. Kubota, Applied Catalysis B: Environmental 83 (2008) 56. https://doi.org/10.1016/j.apcatb.2008.01.034
  102. A. Kay, I. Cesar, M. Gratzel, Journal of the American Chemical Society 128 (2006) 15714. https://doi.org/10.1021/ja064380l
  103. Q. Sun, W. Leng, Z. Li, Y. Xu, Journal of Hazardous Materials 229 (2012) 224.
  104. Y. Zhang, Q. Li, Solid State Sciences 16 (2013) 16. https://doi.org/10.1016/j.solidstatesciences.2012.11.012
  105. B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, V. Murugesan, Journal of Hazardous Materials 252-253 (2013) 233. https://doi.org/10.1016/j.jhazmat.2013.02.060
  106. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renewable and Sustainable Energy Reviews 11 (2007) 401. https://doi.org/10.1016/j.rser.2005.01.009
  107. V. Iliev, D. Tomova, S. Rakovsky, Desalination 260 (2010) 101. https://doi.org/10.1016/j.desal.2010.04.058
  108. N. Farhangi, R.R. Chowdhury, Y.M. Gonzalez, M.B. Ray, P.A. Charpentier, Applied Catalysis B: Environmental 110 (2011) 25. https://doi.org/10.1016/j.apcatb.2011.08.012
  109. X. Lu, Y. Ma, B. Tian, J. Zhang, Solid State Science 13 (2011) 625. https://doi.org/10.1016/j.solidstatesciences.2010.12.036
  110. X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng, Journal of the American Chemical Society 131 (2009) 3152. https://doi.org/10.1021/ja8092373
  111. N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, Journal of Physical Chemistry C 113 (2009) 3062. https://doi.org/10.1021/jp809104t
  112. J. Li, L. Na, Q. Xie, S. Chen, H. Zhao, Industrial Engineering Chemistry Research 47 (2008) 3804. https://doi.org/10.1021/ie0712028
  113. V. Stengl, V. Houskova, S. bakardjieva, N. Murafa, ACS Applied Materials and Interfaces 2 (2010) 575. https://doi.org/10.1021/am9007598
  114. A. Zaleska, J.W. Sobczak, E. Grabowska, J. Hupka, Applied Catalysis B: Environmental 78 (2008) 92. https://doi.org/10.1016/j.apcatb.2007.09.005
  115. K. Sivaranjani, C.S. Gopinath, Journal of Materials Chemistry 21 (2011) 2639. https://doi.org/10.1039/c0jm03825c
  116. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 93 (2001) 269.
  117. K. Elghniji, M. Ksibi, E. Elaloui, Journal of Industrial and Engineering Chemistry 18 (2012) 178. https://doi.org/10.1016/j.jiec.2011.11.011
  118. J. Zhang, W. Fu, J. Xi, H. He, S. Zhao, H. Lu, Z. Ji, Journal of Alloys and Compounds 575 (2013) 40. https://doi.org/10.1016/j.jallcom.2013.04.007
  119. G. Wu, J. Wang, D. Thomas, A. Chen, Langmuir 24 (2008) 3503. https://doi.org/10.1021/la703098g
  120. K. Lv, B. Cheng, J. Yu, G. Liu, Physical Chemistry Chemical Physics 14 (2012) 5349. https://doi.org/10.1039/c2cp23461k
  121. N. Todorova, T. Giannakopoulou, G. Romanos, T. Vaimakis, J. Yu, C. Trapalis, International Journal of Photoenergy (2010), Article Id 534038.
  122. L. Lin, W. Lin, J. Xie, Y. Zhu, B. Zhao, Y. Xie, Applied Catalysis B: Environmental 75 (2007) 52. https://doi.org/10.1016/j.apcatb.2007.03.016
  123. S.K. Samatray, K.M. Parida, Journal of Molecular Catalysis A: Chemical 176 (2001) 156.
  124. G. Yang, Z. Yan, T. Xiao, Applied Surface Science 258 (2012) 4016. https://doi.org/10.1016/j.apsusc.2011.12.092
  125. P. Mohapatra, S. Samantaray, K.M. Parida, Journal of Photochemistry and Photobiology A: Chemistry 170 (2005) 189. https://doi.org/10.1016/j.jphotochem.2004.08.012
  126. S.K. Samatray, P. Mohapatra, K.M. Parida, Journal of Molecular Catalysis A: Chemical 198 (2003) 277. https://doi.org/10.1016/S1381-1169(02)00693-3
  127. P. Zhou, J. Yu, Y. Wang, Applied Catalysis B: Environmental 142-143 (2013) 45. https://doi.org/10.1016/j.apcatb.2013.04.063
  128. J. Yu, Q. Li, S. Liu, M. Jaroniec, Chemistry-A European Journal 19 (2013) 2433. https://doi.org/10.1002/chem.201202778
  129. M. Bettinelli, V. Dallacasa, D. Falcomer, P. Fornasiero, V. Gombac, T. Montini, L. Romano, A. Speghini, Journal of Hazardous Materials 146 (2007) 529. https://doi.org/10.1016/j.jhazmat.2007.04.053
  130. S. Bagwasi, B. Tian, J. Zhang, M. Nasir, Chemical Engineering Journal 217 (2013) 108. https://doi.org/10.1016/j.cej.2012.11.080
  131. H. Bai, Z. Liu, D.D. Sun, Chemical Communications 46 (2011) 6542.
  132. J.S. Chen, C. Chen, J. Liu, R. Xu, S.Z. Qiao, X.W. Lou, Chemical Communications 47 (2011) 2631. https://doi.org/10.1039/c0cc04471g
  133. M. Safari, M. Nikazar, M. Dadvar, Journal of Industrial and Engineering Chemistry (2013), in press.
  134. Y. Dai, C.M. Cobley, J. Zeng, Y. Sun, Y. Xia, Nano Letters 9 (2009) 2455. https://doi.org/10.1021/nl901181n
  135. H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, Journal of the American Chemical Society 129 (2007) 8406.
  136. B. Ding, H.Y. Kim, C. Kim, M. Khil, S.J. Park, Nanotechnology 14 (2003) 532. https://doi.org/10.1088/0957-4484/14/5/309
  137. T. Peng, A. Hasegawa, J. Qiu, K. Hirao, Chemistry of Materials 15 (2003) 2011. https://doi.org/10.1021/cm020828f
  138. X. Zhang, T. Zhang, J. Ng, D.D. Sun, Advanced Functional Materials 19 (2009) 3731. https://doi.org/10.1002/adfm.200901435
  139. Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Journal of Physical Chemistry C 111 (2007) 2709. https://doi.org/10.1021/jp066519k
  140. H. Xu, F. Jia, Z. Ai, L. Zhang, Crystal Growth and Design 8 (2007) 1216.
  141. H.J. Yun, H. Lee, J.B. Joo, W. Kim, J. Yi, Journal of Physical Chemistry C 113 (2009) 3050. https://doi.org/10.1021/jp808604t
  142. J. Yu, Q. Xiang, M. Zhou, Applied Catalysis B: Environmental 90 (2009) 595. https://doi.org/10.1016/j.apcatb.2009.04.021
  143. Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Environmental Science and Technology 42 (2008) 8547. https://doi.org/10.1021/es8016842
  144. S. Yoriya, C.A. Grimes, Langmuir 26 (2009) 417.
  145. J. Yu, G. Dai, B. Cheng, Journal of Physical Chemistry C 114 (2010) 19378. https://doi.org/10.1021/jp106324x
  146. J. Fan, L. Zhao, J. Yu, G. Liu, Nanoscale 4 (2012) 6597. https://doi.org/10.1039/c2nr32048g
  147. Y. Aoyama, Y. Oaki, R. Ise, H. Imai, Crystal Engineering Communications 14 (2012) 1405. https://doi.org/10.1039/c1ce05774j
  148. X. Gan, X. Gao, J. Qiu, P. He, X. Li, X. Xiao, Crystal Growth and Design 12 (2011) 289.
  149. G. Hasegawa, K. Morisato, K. Kanamori, K. Nakanishi, Journal of Separation Science 34 (2011) 3004. https://doi.org/10.1002/jssc.201100538
  150. G. Tian, Y. Chen, W. Zhou, K. Pan, C. Tain, X. Haung, H. Fu, Crystal Engineering Communications 13 (2011) 2994. https://doi.org/10.1039/c0ce00851f
  151. J.G. Yu, Y.R. Su, B. Cheng, Advanced Functional Materials 17 (2007) 1984. https://doi.org/10.1002/adfm.200600933
  152. S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.I. Lee, Chemistry of Materials 15 (2003) 3326. https://doi.org/10.1021/cm030171d
  153. T. Nguyen-Phan, E.W. Shin, Journal of Industrial and Engineering Chemistry 17 (2011) 397. https://doi.org/10.1016/j.jiec.2011.05.013
  154. Z. Xu, X. Meng, Journal of Hazardous Materials 168 (2009) 747. https://doi.org/10.1016/j.jhazmat.2009.02.084
  155. H. He, A. Chen, M. Chang, L. Ma, C. Li, Journal of Industrial and Engineering Chemistry 19 (2013) 1112. https://doi.org/10.1016/j.jiec.2012.12.006
  156. I.M. Arabatzis, P. Falaras, Nano Letters 3 (2002) 249.
  157. A. Yamamoto, H. Imai, Journal of Catalysis 226 (2004) 462. https://doi.org/10.1016/j.jcat.2004.05.035
  158. J. Liu, M. Li, J. Wang, Y. Song, L. Jiang, T. Murakami, A. Fujishima, Environmental Science and Technology 43 (2009) 9425. https://doi.org/10.1021/es902462c
  159. M.K. Seo, S.J. Park, Journal of Nanoscience and Nanotechnology 11 (2011) 4633. https://doi.org/10.1166/jnn.2011.3691
  160. Z.B. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, Journal of Physical Chemistry B 102 (1998) 10871. https://doi.org/10.1021/jp982948+
  161. A. Fujishima, X.T. Zhang, D.A. Tryk, Surface Science Reports 63 (2008) 515. https://doi.org/10.1016/j.surfrep.2008.10.001
  162. H.Z. Zhang, J.F. Banfield, Journal of Physical Chemistry B 104 (2000) 34817.
  163. M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, Journal of Physical Chemistry C 111 (2007) 14992. https://doi.org/10.1021/jp075258r
  164. T. Zhao, Z. Liu, K. Nakata, S. Nishimoto, T. Murakami, Y. Zhao, L. Jiang, A. Fujishima, Journal of Materials Chemistry 20 (2010) 5099.
  165. C.W. Wu, T. Ohsuna, M. Kuwabara, K. Kuroda, Journal of the American Chemical Society 128 (2006) 4544. https://doi.org/10.1021/ja060453p
  166. B. Liu, L. Peng, Journal of Alloys and Compounds 571 (2013) 145. https://doi.org/10.1016/j.jallcom.2013.03.221
  167. J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 3 (2007) 300. https://doi.org/10.1002/smll.200600426
  168. W. Xie, S. Yuan, X. Mao, W. Hu, P. Liao, M. Tong, A.N. Alshawabkeh, Water Research 47 (2013) 3573. https://doi.org/10.1016/j.watres.2013.04.004
  169. K. Lv, J. Li, X. Qing, W. Li, Q. Chen, Journal of Hazardous Materials 189 (2011) 329. https://doi.org/10.1016/j.jhazmat.2011.02.038
  170. K. Nagaveni, G. Sivalingam, M.S. Hedge, G. Madras, Environmental Science and Technology 38 (2004) 1600. https://doi.org/10.1021/es034696i
  171. I.A. Siddiquey, T. Furusawa, M. Sato, K. Honda, N. Suzuki, Dyes and Pigments 76 (2008) 754-759. https://doi.org/10.1016/j.dyepig.2007.01.020
  172. J.C. Yu, J. Yu, J. Zhao, Applied Catalysis B: Environmental 36 (2002) 31. https://doi.org/10.1016/S0926-3373(01)00277-6
  173. S.J. Park, B.J. Kim, J.M. Rhee, Journal of Korean Industrial and Engineering Chemistry 14 (2003) 291.
  174. M.H. Baek, W.C. Jung, J.W. Yoon, J.S. Hong, Y.S. Lee, J.K. Suh, Journal of Industrial and Engineering Chemistry 19 (2013) 469. https://doi.org/10.1016/j.jiec.2012.08.026
  175. M.S. Kim, G. Liu, W.K. Nam, B.W. Kim, Journal of Industrial and Engineering Chemistry 17 (2011) 223. https://doi.org/10.1016/j.jiec.2011.02.010
  176. D.Y. Kim, J. Kim, J. Kim, A.Y. Kim, G. Lee, M. Kang, Journal of Industrial and Engineering Chemistry 18 (2012) 1. https://doi.org/10.1016/j.jiec.2011.11.090
  177. J. Chen, G. Li, H. Huang, H. Zhao, T. An, Applied Catalysis B: Environmental 123- 124 (2012) 69. https://doi.org/10.1016/j.apcatb.2012.04.020
  178. Y. Cong, X. Li, Y. Qin, Z. Dong, G. Yuan, Z. Cui, X. Lai, Applied Catalysis B: Environmental 107 (2011) 128. https://doi.org/10.1016/j.apcatb.2011.07.005
  179. S. Jeon, J. Yun, Y.S. Lee, H.I. Kim, Journal of Industrial and Engineering Chemistry 18 (2012) 487. https://doi.org/10.1016/j.jiec.2011.11.068
  180. L. Huang, Q. Chan, X. Wu, H. Wang, Y. Liu, Journal of Industrial and Engineering Chemistry 18 (2012) 574. https://doi.org/10.1016/j.jiec.2011.11.060
  181. K. Woan, G. Pyrgiotakis, W. Sigmund, Advanced Materials 21 (2009) 2233. https://doi.org/10.1002/adma.200802738
  182. Y.C. Lee, J.W. Yang, Journal of Industrial and Engineering Chemistry 18 (2012) 1178. https://doi.org/10.1016/j.jiec.2012.01.005
  183. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, Journal of Physical Chemistry C 113 (2009) 19812. https://doi.org/10.1021/jp905456f
  184. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2 (2008) 1487. https://doi.org/10.1021/nn800251f
  185. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Kalkus Jr., ACS Catalysis 2 (2013) 949.
  186. M.Q. Yang, N. Zhang, Y.J. Xu, ACS Applied Materials and Interfaces 5 (2013) 1156. https://doi.org/10.1021/am3029798
  187. R. Leary, A. Westwood, Carbon 49 (2011) 741. https://doi.org/10.1016/j.carbon.2010.10.010
  188. A. Geim, Science 324 (2009) 1530. https://doi.org/10.1126/science.1158877
  189. X. Hu, Q. Zhou, Chemical Reviews 113 (2013) 3815. https://doi.org/10.1021/cr300045n
  190. S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. Del Monte, Chemical Society Reviews 42 (2013) 794. https://doi.org/10.1039/c2cs35353a
  191. K.S. Kim, K.Y. Rhee, S.J. Park, Materials Research Bulletin 46 (2011) 1301. https://doi.org/10.1016/j.materresbull.2011.03.025
  192. M.F.L. de Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339 (2013) 535. https://doi.org/10.1126/science.1222453
  193. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.J. Zhu, Nanoscale 5 (2013) 4015. https://doi.org/10.1039/c3nr33849e
  194. K. Ahmed, S.S. Nizami, N.Z. Raza, Journal of Industrial and Engineering Chemistry 19 (2013) 1169. https://doi.org/10.1016/j.jiec.2012.12.014
  195. F.L. Jin, S.J. Park, Carbon Letters 14 (2013) 1. https://doi.org/10.5714/CL.2012.14.1.001
  196. S.M. Park, Y.W. Lim, C.H. Kim, D.J. Kim, W.J. Moon, J.H. Kim, J.S. Lee, C.K. Hong, G. Seo, Journal of Industrial and Engineering Chemistry 19 (2013) 712. https://doi.org/10.1016/j.jiec.2012.10.012
  197. K.S. Kim, S.J. Park, Electrochemistry Communications 22 (2012) 89. https://doi.org/10.1016/j.elecom.2012.05.035
  198. L.Y. Meng, S.J. Park, Current Applied Physics 13 (2013) 640. https://doi.org/10.1016/j.cap.2012.10.008
  199. K.S. Kim, S.J. Park, Electrochimica Acta 65 (2012) 50. https://doi.org/10.1016/j.electacta.2012.01.009
  200. A. Politano, G. Chiarello, Applied Physics Letters 102 (2013) 201608. https://doi.org/10.1063/1.4804189
  201. K.S. Kim, S.J. Park, Materials Research Bulletin 47 (2012) 4146. https://doi.org/10.1016/j.materresbull.2012.08.082
  202. Y. Min, G. He, R. Li, W. Zhao, Y. Chen, Y. Zhang, Separation and Purification Technology 106 (2013) 97. https://doi.org/10.1016/j.seppur.2012.12.023
  203. S.Y. Lee, S.J. Park, Journal of Solid State Chemistry 184 (2011) 2655. https://doi.org/10.1016/j.jssc.2011.07.034
  204. S. Kim, M.H. Cho, J.R. Lee, S.J. Park, Journal of Power Sources 159 (2006) 46. https://doi.org/10.1016/j.jpowsour.2006.04.039
  205. S.J. Park, Y. Jung, S. Kim, Journal of Fluorine Chemistry 144 (2012) 124. https://doi.org/10.1016/j.jfluchem.2012.08.003
  206. E. Costa, P.P. Zamora, A.J.G. Zarbin, Journal of Colloid Interface Science 368 (2012) 121. https://doi.org/10.1016/j.jcis.2011.10.028
  207. X. Zhang, L. Lei, Journal of Hazardous Materials 153 (2008) 827. https://doi.org/10.1016/j.jhazmat.2007.09.052
  208. T. Matsunaga, M. Inagaki, Applied Catalysis B: Environmental 64 (2006) 9. https://doi.org/10.1016/j.apcatb.2005.10.021
  209. S. Sakthivel, H. Kisch, Angewandte Chemie International Edition 42 (2003) 4908. https://doi.org/10.1002/anie.200351577
  210. K. Woan, G. Pyrgiotakis, W. Sigmund, Advanced Materials 21 (2009) 2233. https://doi.org/10.1002/adma.200802738
  211. W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, J.C. Nino, Journal of the American Ceramic Society 89 (2006) 395. https://doi.org/10.1111/j.1551-2916.2005.00807.x
  212. Y.A. Shaban, S.U.M. Khan, International Journal of Hydrogen Energy 33 (2008) 1118. https://doi.org/10.1016/j.ijhydene.2007.11.026
  213. Q. Xiang, J. Yu, Journal of Physical Chemistry Letters 4 (2013) 753. https://doi.org/10.1021/jz302048d
  214. Q. Xiang, J. Yu, M. Jaroniec, Journal of the American Ceramic Society 134 (2012) 6575.
  215. J.S. Im, S.K. Lee, J. Yun, Y.S. Lee, Journal of Industrial and Engineering Chemistry 18 (2012) 1023. https://doi.org/10.1016/j.jiec.2011.11.149
  216. M.K. Seo, S.J. Park, Journal of Nanoscience and Nanotechnology 9 (2009) 7186.
  217. M.K. Seo, S.J. Park, Current Applied Physics 10 (2010) 391. https://doi.org/10.1016/j.cap.2009.06.032
  218. Z.D. Meng, L. Zhu, W.C. Oh, Journal of Industrial and Engineering Chemistry 18 (2012) 2004. https://doi.org/10.1016/j.jiec.2012.05.019
  219. D. Chu, X. Yuan, G. Qin, M. Xu, P. Zheng, J. Lu, Journal of Nanoparticle Research 10 (2008) 357. https://doi.org/10.1007/s11051-007-9241-7
  220. N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, D. Wang, ACS Nano 7 (2013) 1504. https://doi.org/10.1021/nn305288z
  221. Y.J. Ng, S. Ikeda, M. Matsumura, R. Amal, Energy and Environmental Science 5 (2012) 9307. https://doi.org/10.1039/c2ee22128d
  222. L. Brunet, D.Y. Lyon, E.M. Hotze, P.J.J. Alvarez, M.R. Wiesner, Environmental Science and Technology 43 (2009) 4355. https://doi.org/10.1021/es803093t
  223. Y. Chen, J.C. Crittenden, S. Hackney, L. Sutter, D.W. Hand, Environmental Science and Technology 39 (2005) 1201. https://doi.org/10.1021/es049252g
  224. O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Carbon 47 (2009) 3280. https://doi.org/10.1016/j.carbon.2009.07.046
  225. Y. Ou, J. Lin, S. Fang, D. Liao, Chemical Physics Letters 429 (2006) 199. https://doi.org/10.1016/j.cplett.2006.08.024
  226. Y. Luo, Y. Heng, X. Dai, W. Chen, J. Li, Journal of Solid State Chemistry 182 (2009) 2521. https://doi.org/10.1016/j.jssc.2009.07.010
  227. K. Woan, G. Pyrgiotakis, W. Sigmund, Advanced Materials 21 (2009) 2233. https://doi.org/10.1002/adma.200802738
  228. O. Akhavan, E. Ghaderi, Journal of Physical Chemistry C 113 (2009) 20214. https://doi.org/10.1021/jp906325q
  229. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, S.V. Dubonos, Science 306 (2004) 666. https://doi.org/10.1126/science.1102896
  230. L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, X. Han, ACS Applied Materials and Interfaces 5 (2012) 3085.
  231. Q. Xiang, J. Yu, M. Jaroniec, Chemical Society Reviews 41 (2012) 782. https://doi.org/10.1039/c1cs15172j
  232. P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, G. Ding, International Journal of Hydrogen Energy 37 (2012) 2224. https://doi.org/10.1016/j.ijhydene.2011.11.004
  233. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4 (2010) 380. https://doi.org/10.1021/nn901221k
  234. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331 (2011) 746. https://doi.org/10.1126/science.1200448
  235. W.D. Zhang, B. Xu, L.C. Jiang, Journal of Materials Chemistry 20 (2010) 6383. https://doi.org/10.1039/b926341a
  236. S. Mozia, P. Brozek, J. Przepiorski, B. Tryba, A.W. Morawski, Journal of Nanomaterials (2012), Article ID: 949764.
  237. E. Kowalska, S. Rau, Recent Patents on Engineering 4 (2010) 242. https://doi.org/10.2174/187221210794578583

Cited by

  1. Superior Photocatalytic Activity of Titanium Dioxide Nanoparticles Linked on Single-walled Carbon Nanotubes through Mussel-inspired Chemistry vol.43, pp.11, 2014, https://doi.org/10.1246/cl.140627
  2. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications vol.15, pp.2, 2013, https://doi.org/10.5714/cl.2014.15.2.089
  3. Dispersed-Nanoparticle Loading Synthesis for Monodisperse Au-Titania Composite Particles and Their Crystallization for Highly Active UV and Visible Photocatalysts vol.30, pp.24, 2013, https://doi.org/10.1021/la5012499
  4. Fast-Growing Field of Magnetically Recyclable Nanocatalysts vol.114, pp.14, 2014, https://doi.org/10.1021/cr500134h
  5. N and Ti3+ co-doped 3D anatase TiO2 superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity vol.3, pp.44, 2015, https://doi.org/10.1039/c5ta05654c
  6. Synergic Effects of Photocatalytic and Enzymatic Degradation of Dibenzothiophene by Titania Nanolayer Coated on Glass and Intracellular Enzymes vol.45, pp.12, 2013, https://doi.org/10.1080/15533174.2013.871733
  7. Dye Degradation Using Ag/ZnO Illuminated by Fluorescent Lamps vol.749, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/amm.749.206
  8. Nanostructured thin films based on TiO2 and/or SiC for use in photoelectrochemical cells: A review of the material characteristics, synthesis and recent applications vol.29, pp.None, 2013, https://doi.org/10.1016/j.mssp.2014.05.053
  9. Nanostructured thin films based on TiO2 and/or SiC for use in photoelectrochemical cells: A review of the material characteristics, synthesis and recent applications vol.29, pp.None, 2013, https://doi.org/10.1016/j.mssp.2014.05.053
  10. Facet-Dependent Electron Trapping in TiO2 Nanocrystals vol.119, pp.4, 2013, https://doi.org/10.1021/jp511529u
  11. A new, sustainable LaFeO3 material prepared from biowaste-sourced soluble substances vol.39, pp.2, 2015, https://doi.org/10.1039/c4nj01279h
  12. Synthesis of TiO2 nanopowders from red gypsum using EDTA as complexing agent vol.5, pp.1, 2013, https://doi.org/10.1007/s40097-014-0137-7
  13. Photo Induced Membrane Separation for Water Purification and Desalination Using Azobenzene Modified Anodized Alumina Membranes vol.9, pp.6, 2015, https://doi.org/10.1021/nn505970n
  14. Rational design of nanomaterials for water treatment vol.7, pp.41, 2015, https://doi.org/10.1039/c5nr04870b
  15. 섬유여과기와 전기분해조를 병합한 물 재이용 시스템 설계 vol.24, pp.11, 2015, https://doi.org/10.5322/jesi.2015.24.11.1385
  16. Molecular Electronic Effects on the Thermal Grafting of Aryl Iodides to TiO2 Surfaces vol.119, pp.50, 2013, https://doi.org/10.1021/acs.jpcc.5b08333
  17. Preparation and visible-light photocatalytic performances of g-C3N4 surface hybridized with a small amount of CdS nanoparticles vol.51, pp.2, 2013, https://doi.org/10.1007/s10853-015-9417-y
  18. Superior photocatalytic and antibacterial activities of conducting ceramic TiO2@poly(o-phenylenediamine) core-shell nanocomposites vol.27, pp.12, 2016, https://doi.org/10.1007/s10854-016-5403-7
  19. Immobilized TiO2 nanoparticles produced by flame spray for photocatalytic water remediation vol.18, pp.8, 2016, https://doi.org/10.1007/s11051-016-3551-6
  20. Photo catalytic degradation of linear alkylbenzene sulfonic acid vol.42, pp.8, 2013, https://doi.org/10.1007/s11164-016-2483-1
  21. Effect of Process Temperature and Reaction Cycle Number on Atomic Layer Deposition of TiO2 Thin Films Using TiCl4 and H2O Precursors: Correlation Between Material Properties and Process Environment vol.46, pp.1, 2013, https://doi.org/10.1007/s13538-015-0383-2
  22. Light expanded clay aggregate (LECA) as a support for TiO2, Fe/TiO2, and Cu/TiO2 nanocrystalline photocatalysts: a comparative study on the structure, morphology, and activity vol.13, pp.10, 2013, https://doi.org/10.1007/s13738-016-0896-9
  23. Preparation and photocatalytic activity of WO3-MWCNT nanocomposite for degradation of naphthalene under visible light irradiation vol.6, pp.45, 2013, https://doi.org/10.1039/c6ra04642h
  24. Copper modified TiO2catalysts: application to nitrobenzenes degradation vol.67, pp.None, 2013, https://doi.org/10.1051/matecconf/20166707031
  25. Fabrication and Characterization of CuCr2O4 Nanocomposite by XRD, FESEM, FTIR, and DRS vol.46, pp.6, 2013, https://doi.org/10.1080/15533174.2014.989591
  26. Magnetic Nanocomposite Thin Film Photocatalyst and Cell Extract Enzyme Biocatalyst in Application of Nanobiotechnology for Development of a Photo-Bio Desulfurization System vol.46, pp.6, 2016, https://doi.org/10.1080/15533174.2014.989598
  27. Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid vol.91, pp.1, 2013, https://doi.org/10.1002/jctb.4577
  28. Surface investigation and catalytic activity of iron-modified TiO2 vol.6, pp.1, 2013, https://doi.org/10.1007/s40097-015-0182-x
  29. Preparation of flower-like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants vol.239, pp.None, 2013, https://doi.org/10.1016/j.jssc.2016.04.010
  30. Comparative study on visible light photocatalytic activity of Fe-modified TiO2 powders vol.124, pp.7, 2016, https://doi.org/10.2109/jcersj2.16033
  31. Photocatalytic, Antimicrobial and Biocompatibility Features of Cotton Knit Coated with Fe-N-Doped Titanium Dioxide Nanoparticles vol.9, pp.9, 2013, https://doi.org/10.3390/ma9090789
  32. Fabrication of anti-poisoning core-shell TiO2 photocatalytic system through a 4-methoxycalix[7]arene film vol.1, pp.None, 2013, https://doi.org/10.1016/j.mtchem.2016.09.001
  33. A detailed insight into the preparation of nanocrystalline TiO2 powders in supercritical carbon dioxide vol.52, pp.21, 2013, https://doi.org/10.1007/s10853-017-1398-6
  34. Cobalt-doped BiVO4 (Co-BiVO4) as a visible-light-driven photocatalyst for the degradation of malachite green and inactivation of harmful microorganisms in wastewater vol.43, pp.9, 2017, https://doi.org/10.1007/s11164-017-3036-y
  35. Structure, Morphology and Optical Properties of TiO2 Films Formed by Anodizing in a Mixed Solution of Citric Acid and Sulfamic Acid vol.26, pp.8, 2013, https://doi.org/10.1007/s11665-017-2818-0
  36. Enhancement of visible light irradiation photocatalytic activity of $$\hbox {SrTiO}_{3}$$ SrTiO 3 nanoparticles by Pt doping for oxidation of cyclohexane vol.129, pp.11, 2013, https://doi.org/10.1007/s12039-017-1369-0
  37. The $$\hbox {Co}^{2+}$$ Co 2 + Reduction on the Hetero-System $$\hbox {CuFe}_{2} \hbox {O}_{4}/\hbox {SnO}_{2}$$ CuFe 2 O 4 / SnO 2 Under Solar Light vol.42, pp.6, 2013, https://doi.org/10.1007/s13369-016-2396-8
  38. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications vol.46, pp.38, 2013, https://doi.org/10.1039/c7dt02063e
  39. Chitosan microspheres as a template for TiO2and ZnO microparticles: studies on mechanism, functionalization and applications in photocatalysis and H2S removal vol.7, pp.31, 2017, https://doi.org/10.1039/c7ra01227f
  40. Silver/Carbon Codoped Titanium Dioxide Photocatalyst for Improved Dye Degradation under Visible Light vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/3079276
  41. Kinetic analysis of soil contained pyrene oxidation by a pulsed discharge plasma process vol.19, pp.1, 2013, https://doi.org/10.1088/1009-0630/19/1/015504
  42. WO3-Doped TiO2Coating on Charcoal Activated with Increase Photocatalytic and Antibacterial Properties Synthesized by Microwave-Assisted Sol-Gel Method vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/7902930
  43. Review of nanotechnology value chain for water treatment applications in Mexico vol.3, pp.1, 2013, https://doi.org/10.1016/j.reffit.2017.01.008
  44. Fabrication of visible light-triggered photocatalytic materials from the coupling ofn-type zinc oxide andp-type copper oxide vol.817, pp.None, 2013, https://doi.org/10.1088/1742-6596/817/1/012058
  45. Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited TiO 2 vol.121, pp.13, 2013, https://doi.org/10.1021/acs.jpcc.7b00472
  46. One-Pot Route towards Active TiO 2 Doped Hierarchically Porous Cellulose: Highly Efficient Photocatalysts for Methylene Blue Degradation vol.10, pp.4, 2013, https://doi.org/10.3390/ma10040373
  47. Influence of the Sacrificial Polystyrene Removal Pathway on the TiO2 Nanocapsule Structure vol.100, pp.6, 2013, https://doi.org/10.1002/hlca.201700014
  48. Optimisation of chemical oxygen demand removal from landfill leachate by sonocatalytic degradation in the presence of cupric oxide nanoparticles vol.35, pp.6, 2013, https://doi.org/10.1177/0734242x17704715
  49. Graphitic carbon nitride modified by thermal, chemical and mechanical processes as metal-free photocatalyst for the selective synthesis of benzaldehyde from benzyl alcohol vol.353, pp.None, 2013, https://doi.org/10.1016/j.jcat.2017.06.030
  50. Nonpolar Resistive Switching in Ag@TiO2 Core-Shell Nanowires vol.9, pp.44, 2013, https://doi.org/10.1021/acsami.7b10666
  51. Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-00173-0
  52. Preparation, Characterization and Photocatalytic Properties of Visible-Light-Driven CuO/SnO2/TiO2 Photocatalyst vol.148, pp.7, 2013, https://doi.org/10.1007/s10562-018-2385-5
  53. Ag activated SnO2 films for enhanced photocatalytic dye degradation against toxic organic dyes vol.29, pp.10, 2018, https://doi.org/10.1007/s10854-018-8868-8
  54. Preparation of renewable porous TiO2/PVA composite sphere as photocatalyst for methyl orange degradation vol.25, pp.4, 2018, https://doi.org/10.1007/s10934-017-0518-7
  55. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules vol.122, pp.20, 2018, https://doi.org/10.1021/acs.jpcc.8b01526
  56. Stability of Adsorbed Water on TiO2-TiN Interfaces. A First-Principles and Ab Initio Thermodynamics Investigation vol.122, pp.27, 2013, https://doi.org/10.1021/acs.jpcc.8b03520
  57. Self-assembled selenium nanoparticles and their application in the rapid diagnostic detection of small cell lung cancer biomarkers vol.14, pp.4, 2013, https://doi.org/10.1039/c7sm01687e
  58. Silver nanoparticle embedded copper oxide as an efficient core-shell for the catalytic reduction of 4-nitrophenol and antibacterial activity improvement vol.47, pp.27, 2013, https://doi.org/10.1039/c8dt02154f
  59. Silicate silver/flower-like magnalium hydroxide composites for enhanced visible light photodegradation activities vol.8, pp.41, 2018, https://doi.org/10.1039/c8ra01154k
  60. Photocatalytic activity of polyvinyl borate/titanium dioxide composites for UV light degradation of organic pollutants vol.55, pp.5, 2013, https://doi.org/10.1080/10601325.2018.1453259
  61. Morphology control of rutile TiO2 with tunable bandgap by preformed β-FeOOH nanoparticles vol.29, pp.12, 2013, https://doi.org/10.1088/1361-6528/aaa615
  62. Synthesis of Al-MCM-41@Ag/TiO2 Nanocomposite and Its Photocatalytic Activity for Degradation of Dibenzothiophene vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/8418605
  63. Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array with various reaction times using one step hydrothermal method vol.154, pp.None, 2018, https://doi.org/10.1016/j.ijleo.2017.10.091
  64. Decomposition of 2-naphthol in water by TiO2 modified with SnOx or (Mn, Sn)Ox and MnOx vol.126, pp.2, 2013, https://doi.org/10.2109/jcersj2.17209
  65. Sintered TiO2/recycled glass composites designed for the potential degradation of waterborne pollutants vol.25, pp.2, 2013, https://doi.org/10.1515/secm-2016-0016
  66. Sintered TiO2/recycled glass composites designed for the potential degradation of waterborne pollutants vol.25, pp.2, 2013, https://doi.org/10.1515/secm-2016-0016
  67. Oxidation Processes in Water Treatment: Are We on Track? vol.52, pp.9, 2013, https://doi.org/10.1021/acs.est.8b00586
  68. Enhancement of visible-light photoactivity by polypropylene coated plasmonic Au/TiO2 for dye degradation in water solution vol.441, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2018.01.290
  69. Degradation of sertraline in water by suspended and supported TiO2 vol.20, pp.2, 2013, https://doi.org/10.2478/pjct-2018-0030
  70. Purification of textile wastewater by using coated Sr/S/N doped TiO2 nanolayers on glass orbs vol.35, pp.7, 2013, https://doi.org/10.1007/s11814-017-0176-0
  71. Characterization and Applications of Nanoparticles Modified in-Flight with Silica or Silica-Organic Coatings vol.8, pp.7, 2013, https://doi.org/10.3390/nano8070530
  72. Hydrothermal synthesis, structure, and photocatalytic properties of SnO2/rGO nanocomposites with different GO concentrations vol.5, pp.9, 2013, https://doi.org/10.1088/2053-1591/aad6ca
  73. The role of titania layers in decomposition of endocrine disruptors under UV Light vol.88, pp.1, 2018, https://doi.org/10.1007/s10971-018-4654-6
  74. Microwave-Assisted Hydrothermal Synthesis of ZnFe2O4/TiO2 Composite and Photocatalytic Properties vol.788, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/kem.788.102
  75. The MoS2 Quantum Modified Hollow TiO2 Nano-Heterojunction for Enhanced Hydrogen Evolution vol.189, pp.None, 2013, https://doi.org/10.1088/1755-1315/189/3/032042
  76. Solid-Phase Photocatalytic Degradation of Polyvinyl Borate vol.8, pp.11, 2013, https://doi.org/10.3390/catal8110499
  77. Enhanced photocatalytic activity using GO/TiO2 catalyst for the removal of DCA solutions vol.25, pp.35, 2013, https://doi.org/10.1007/s11356-017-0901-6
  78. Robust fabrication of thin film polyamide-TiO 2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity vol.8, pp.None, 2013, https://doi.org/10.1038/s41598-017-18724-w
  79. Dynamic Intermolecular Interactions Control Adsorption from Mixtures of Natural Organic Matter and Protein onto Titanium Dioxide Nanoparticles vol.52, pp.24, 2013, https://doi.org/10.1021/acs.est.8b04014
  80. TiO 2 decorated functionalized halloysite nanotubes (TiO 2 @HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment vol.9, pp.None, 2013, https://doi.org/10.1038/s41598-019-40775-4
  81. A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification vol.9, pp.1, 2019, https://doi.org/10.3390/catal9010052
  82. Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5942194
  83. Chemical Oxidation for Oil Separation from Oilfield Produced Water under UV Irradiation Using Titanium Dioxide as a Nano-Photocatalyst by Batch and Continuous Techniques vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/9810728
  84. Ellipsometric Investigation of Room Temperature Grown Highly-Oriented Anatase TiO2 Thin Films vol.48, pp.2, 2013, https://doi.org/10.1007/s11664-018-06872-2
  85. Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: Synthesis, photocatalytic activity, degradation byprodu vol.241, pp.None, 2013, https://doi.org/10.1016/j.apcatb.2018.09.039
  86. Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review vol.9, pp.2, 2013, https://doi.org/10.3390/catal9020122
  87. Titanium Dioxide: From Engineering to Applications vol.9, pp.2, 2013, https://doi.org/10.3390/catal9020191
  88. Modification of Immobilized Titanium Dioxide Nanostructures by Argon Plasma for Photocatalytic Removal of Organic Dyes vol.24, pp.3, 2013, https://doi.org/10.3390/molecules24030383
  89. Influence of calcination on the morphology and crystallinity of titanium dioxide nanofibers towards enhancing photocatalytic dye degradation vol.6, pp.2, 2013, https://doi.org/10.1088/2053-1591/aaf013
  90. Design and development of TiO2-Fe0 nanoparticle-immobilized nanofibrous mat for photocatalytic degradation of hazardous water pollutants vol.30, pp.5, 2013, https://doi.org/10.1007/s10854-019-00779-2
  91. Sonocatalytic treatment of phosphonate containing industrial wastewater intensified using combined oxidation approaches vol.51, pp.None, 2019, https://doi.org/10.1016/j.ultsonch.2018.10.018
  92. Recent advances in TiO2 nanoarrays/graphene for water treatment and energy conversion/storage vol.62, pp.3, 2013, https://doi.org/10.1007/s40843-018-9346-3
  93. Photocatalytic activity of polyaniline/Fe-doped TiO2 composites by in situ polymerization method vol.56, pp.3, 2013, https://doi.org/10.1080/10601325.2019.1565548
  94. Photocatalytic and magnetic porous cellulose macrospheres for water purification vol.26, pp.7, 2013, https://doi.org/10.1007/s10570-019-02401-4
  95. Synthesis flower-like BiVO4/BiOI core/shell heterostructure photocatalyst for tetracycline degradation under visible-light irradiation vol.30, pp.10, 2019, https://doi.org/10.1007/s10854-019-01261-9
  96. Enhancement the Photocatalytic and Biological Activity of Nano-sized ZnO Using Hyperbranched Polyester vol.29, pp.3, 2013, https://doi.org/10.1007/s10904-018-01067-y
  97. TiO2-Doped Electrospun Nanofibrous Membrane for Photocatalytic Water Treatment vol.11, pp.5, 2013, https://doi.org/10.3390/polym11050747
  98. The Effects of Thermal and Atmospheric Pressure Radio Frequency Plasma Annealing in the Crystallization of TiO2 Thin Films vol.9, pp.6, 2019, https://doi.org/10.3390/coatings9060357
  99. CuO Nanosheets Modified with Amine and Thiol Grafting for High Catalytic and Antibacterial Activities vol.58, pp.24, 2013, https://doi.org/10.1021/acs.iecr.9b00609
  100. Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review vol.12, pp.12, 2013, https://doi.org/10.3390/ma12121916
  101. Treatment of Polyaniline Wastewater by Coupling of Photoelectro-Fenton and Heterogeneous Photocatalysis with Black TiO2 Nanotubes vol.4, pp.6, 2013, https://doi.org/10.1021/acsomega.9b00352
  102. Preparation and Characterization of Soy Protein Isolate Films Incorporating Modified Nano-TiO2 vol.15, pp.7, 2013, https://doi.org/10.1515/ijfe-2018-0278
  103. Reduced Graphene Oxide-P25 Nanocomposites as Efficient Photocatalysts for Degradation of Bisphenol A in Water vol.9, pp.7, 2019, https://doi.org/10.3390/catal9070607
  104. One-Step Synthesis of TiO2/Graphene Nanocomposites by Laser Pyrolysis with Well-Controlled Properties and Application in Perovskite Solar Cells vol.4, pp.7, 2013, https://doi.org/10.1021/acsomega.9b01352
  105. Advances in Applications of Metal Oxide Nanomaterials as Imaging Contrast Agents vol.216, pp.16, 2019, https://doi.org/10.1002/pssa.201801008
  106. Photocatalytic activity of bismuth oxyiodide nanospheres and nanoplates in the degradation of ciprofloxacin under visible light vol.6, pp.8, 2019, https://doi.org/10.1088/2053-1591/ab2918
  107. Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes vol.221, pp.None, 2013, https://doi.org/10.1016/j.seppur.2019.03.075
  108. Elaboration and Characterization of in Doped TiO2 Thin Films vol.397, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/ddf.397.59
  109. Effect of Reducing Agent NaBH 4 on Photocatalytic Properties of Bi/BiOBr/Bi 2 WO 6 Composites vol.4, pp.34, 2013, https://doi.org/10.1002/slct.201902150
  110. Comprehensive review and future perspectives on the photocatalytic hydrogen production vol.94, pp.10, 2013, https://doi.org/10.1002/jctb.6123
  111. Enhanced photocatalytic activity of biosynthesized Au-Ag/TiO2 catalyst by removing excess anchored biomolecules vol.21, pp.10, 2013, https://doi.org/10.1007/s11051-019-4622-2
  112. A sono-photocatalyst for humic acid removal from water: Operational parameters, kinetics and mechanism vol.57, pp.None, 2013, https://doi.org/10.1016/j.ultsonch.2019.03.022
  113. Preparation and photocatalytic properties of Mo-doped BiVO4 vol.30, pp.21, 2013, https://doi.org/10.1007/s10854-019-02295-9
  114. A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications vol.36, pp.11, 2013, https://doi.org/10.1007/s11814-019-0365-0
  115. Synthesis of nanodiamond-SnO2 core-shell nanocomposite and its application for nitrite electrooxidation vol.27, pp.11, 2013, https://doi.org/10.1080/1536383x.2019.1651720
  116. Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst vol.9, pp.1, 2013, https://doi.org/10.1038/s41598-019-52589-5
  117. The influence of preparation parameters on the photocatalytic performance of mixed bismuth titanate-based nanostructures vol.575, pp.None, 2013, https://doi.org/10.1016/j.physb.2019.07.007
  118. Tuning the Porosity of Supraparticles vol.13, pp.12, 2013, https://doi.org/10.1021/acsnano.9b05673
  119. Cross‐Linked Double Network Graphene Oxide/Polymer Composites for Efficient Coagulation‐Flocculation vol.4, pp.1, 2020, https://doi.org/10.1002/gch2.201900051
  120. Synergic effect of oxygen vacancy defect and shape on the photocatalytic performance of nanostructured TiO2 coating vol.175, pp.None, 2013, https://doi.org/10.1016/j.poly.2019.114214
  121. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies vol.62, pp.1, 2013, https://doi.org/10.1080/01614940.2019.1613323
  122. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties vol.120, pp.2, 2013, https://doi.org/10.1021/acs.chemrev.8b00726
  123. Laser‐Assisted, Large‐Area Selective Crystallization and Patterning of Titanium Dioxide Polymorphs vol.22, pp.2, 2013, https://doi.org/10.1002/adem.201901014
  124. Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications vol.7, pp.2, 2020, https://doi.org/10.1039/c9mh00856j
  125. Hydrogel microcapsules with photocatalytic nanoparticles for removal of organic pollutants vol.7, pp.2, 2020, https://doi.org/10.1039/c9en01108k
  126. Formation of anodic ZrO2 nanostructures in NH4F/ethylene glycol electrolyte vol.483, pp.None, 2020, https://doi.org/10.1088/1755-1315/483/1/012047
  127. Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites vol.10, pp.16, 2020, https://doi.org/10.1039/c9ra10899h
  128. Sonochemical degradation of pesticides in aqueous solution: investigation on the influence of operating parameters and degradation pathway - a systematic review vol.10, pp.13, 2020, https://doi.org/10.1039/c9ra11025a
  129. Ruthenium-based catalysts for water oxidation: the key role of carboxyl groups as proton acceptors vol.22, pp.9, 2013, https://doi.org/10.1039/c9cp05893a
  130. TiO2 microsphere impregnated alginate: a novel hybrid sorbent for uranium removal from aquatic bodies vol.44, pp.10, 2013, https://doi.org/10.1039/c9nj06006e
  131. Tailoring Photocatalytic Activity of TiO2 Nanosheets by 57Fe vol.124, pp.12, 2013, https://doi.org/10.1021/acs.jpcc.9b11781
  132. Improving ultraviolet light photocatalytic activity of polyaniline/silicon carbide composites by Fe‐doping vol.137, pp.14, 2020, https://doi.org/10.1002/app.48524
  133. Photocatalytic activity and photo-electrochemical performance of trimetallic (Cu-Ni-Zn)/TiO2 coating on AISI 316L stainless steel for water treatment vol.126, pp.5, 2013, https://doi.org/10.1007/s00339-020-03550-1
  134. Innovative synthesis of graphene/Pd-doped TiO2 nanocomposite by combination of sonochemical and freeze-drying methods with enhanced visible-light photocatalytic activity vol.10, pp.5, 2020, https://doi.org/10.1007/s13204-020-01317-x
  135. Photocatalytic treatment of tetracycline antibiotic wastewater by silver/TiO 2 nanosheets/reduced graphene oxide and artificial neural network modeling vol.92, pp.5, 2013, https://doi.org/10.1002/wer.1258
  136. Carbon Black-Doped Anatase TiO2 Nanorods for Solar Light-Induced Photocatalytic Degradation of Methylene Blue vol.5, pp.17, 2020, https://doi.org/10.1021/acsomega.0c00504
  137. Carbon Black-Doped Anatase TiO2 Nanorods for Solar Light-Induced Photocatalytic Degradation of Methylene Blue vol.5, pp.17, 2020, https://doi.org/10.1021/acsomega.0c00504
  138. Study of industrial titania synthesis using a hybrid particle-number and detailed particle model vol.219, pp.None, 2013, https://doi.org/10.1016/j.ces.2020.115615
  139. Photocatalytic degradation of acetaminophen and codeine medicines using a novel zeolite-supported TiO2 and ZnO under UV and sunlight irradiation vol.27, pp.21, 2020, https://doi.org/10.1007/s11356-020-09038-y
  140. Ceramic-based photocatalytic membrane reactors for water treatment - where to next? vol.36, pp.5, 2013, https://doi.org/10.1515/revce-2018-0036
  141. Ceramic-based photocatalytic membrane reactors for water treatment - where to next? vol.36, pp.5, 2013, https://doi.org/10.1515/revce-2018-0036
  142. Flexible poly(styrene‐ethylene‐butadiene‐styrene) hybrid nanofibers for bioengineering and water filtration applications vol.137, pp.26, 2020, https://doi.org/10.1002/app.49184
  143. A review on the design and development of photocatalyst synthesis and application in microfluidic reactors: challenges and opportunities vol.36, pp.6, 2013, https://doi.org/10.1515/revce-2018-0013
  144. Advances in Antiviral Material Development vol.85, pp.9, 2020, https://doi.org/10.1002/cplu.202000460
  145. An Integrated Photocatalytic and Photothermal Process for Solar‐Driven Efficient Purification of Complex Contaminated Water vol.8, pp.9, 2013, https://doi.org/10.1002/ente.202000456
  146. Adsorption of phenanthrene from aqueous solutions by biochar derived from an ammoniation-hydrothermal method vol.733, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2020.139267
  147. Assessment of an intrinsic kinetic model for TiO2-formic acid photodegradation using LEDs as a radiation source vol.10, pp.18, 2013, https://doi.org/10.1039/d0cy01081b
  148. Design of Three-Dimensional Hollow-Sphere Architecture of Ti3C2Tx MXene with Graphitic Carbon Nitride Nanoshells for Efficient Photocatalytic Hydrogen Evolution vol.3, pp.9, 2013, https://doi.org/10.1021/acsaem.0c01590
  149. Mechanistic Insights and Photodegradation of Heterostructure Graphene Oxide/Titanium Dioxide vol.63, pp.11, 2020, https://doi.org/10.1007/s11244-020-01300-4
  150. 습식화학공정에 의한 광촉매용 TiO2 3차원 나노구조체 제조 연구 vol.27, pp.5, 2013, https://doi.org/10.4150/kpmi.2020.27.5.381
  151. Surfactant removal from wastewater using photo-cathode microbial fuel cell and laterite-based hybrid treatment system vol.43, pp.11, 2020, https://doi.org/10.1007/s00449-020-02396-4
  152. Enhanced visible photocatalytic degradation of diclofen over N-doped TiO2 assisted with H2O2: A kinetic and pathway study vol.13, pp.11, 2013, https://doi.org/10.1016/j.arabjc.2020.05.023
  153. A Fenton-like method using ZnO doped MIL-88A for degradation of methylene blue dyes vol.10, pp.66, 2013, https://doi.org/10.1039/d0ra08076d
  154. Study of the Properties of TiO2 Doped with Nitrogen and Magnesium using DR-UV Vis Analysis as Catalyst in Wastewater Treatment vol.616, pp.None, 2013, https://doi.org/10.1088/1755-1315/616/1/012071
  155. Hydrothermal Synthesis of FeOOH and Fe2O3 Modified Self-Organizing Immobilized TiO2 Nanotubes for Photocatalytic Degradation of 1H-Benzotriazole vol.10, pp.12, 2020, https://doi.org/10.3390/catal10121371
  156. Harnessing Slow Light in Optoelectronically Engineered Nanoporous Photonic Crystals for Visible Light-Enhanced Photocatalysis vol.11, pp.None, 2013, https://doi.org/10.1021/acscatal.1c03320
  157. Fabrication of Titanium Dioxide/Carbon Fiber (TiO2/CF) Composites for Removal of Methylene Blue (MB) from Aqueous Solution with Enhanced Photocatalytic Activity vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/9986158
  158. Nonstoichiometric perovskite CaMnO3-δ nanomaterial for photocatalytic reduction of CO2 vol.32, pp.4, 2013, https://doi.org/10.1007/s10854-021-05248-3
  159. Effect of the Microstructure of the Semiconductor Support on the Photocatalytic Performance of the Pt-PtOx/TiO2 Catalyst System vol.14, pp.4, 2013, https://doi.org/10.3390/ma14040943
  160. Bridging experiment and theory: enhancing the electrical conductivities of soft-templated niobium-doped mesoporous titania films vol.23, pp.5, 2013, https://doi.org/10.1039/d0cp06544g
  161. Heterogeneous Fenton catalysts: A review of recent advances vol.404, pp.2, 2021, https://doi.org/10.1016/j.jhazmat.2020.124082
  162. Photocatalytic Degradation of Naphthalene By UV/Zno: Kinetics, Influencing Factors and Mechanisms vol.37, pp.1, 2013, https://doi.org/10.13005/ojc/370108
  163. Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review vol.13, pp.6, 2013, https://doi.org/10.3390/polym13060846
  164. Effective Strategies, Mechanisms, and Photocatalytic Efficiency of Semiconductor Nanomaterials Incorporating rGO for Environmental Contaminant Degradation vol.11, pp.3, 2013, https://doi.org/10.3390/catal11030302
  165. TiO2 Photocatalysis for the Transformation of Aromatic Water Pollutants into Fuels vol.11, pp.3, 2013, https://doi.org/10.3390/catal11030317
  166. Outlining the beneficial photocatalytic effect of ZnS deposition in simplistically developed iron oxide nanocomposites of different stoichiometry vol.127, pp.4, 2021, https://doi.org/10.1007/s00339-021-04401-3
  167. Photocatalytic degradation of acetaminophen and caffeine using magnetite-hematite combined nanoparticles: kinetics and mechanisms vol.28, pp.14, 2021, https://doi.org/10.1007/s11356-020-12016-z
  168. Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges vol.269, pp.None, 2013, https://doi.org/10.1016/j.chemosphere.2020.129325
  169. Microwave-Assisted Synthesis of TiO2/GO Composite and Its Adsorption-Photocatalysis Property under Visible Light vol.1143, pp.1, 2013, https://doi.org/10.1088/1757-899x/1143/1/012055
  170. Three-dimensionally interconnected porous PDMS decorated with poly(dopamine) and Prussian blue for floatable, flexible, and recyclable photo-Fenton catalyst activated by solar light vol.545, pp.None, 2013, https://doi.org/10.1016/j.apsusc.2021.148990
  171. An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale vol.765, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2020.144163
  172. Enhanced Photodegradation of p-Nitrobenzoic Acid by Binary Mixtures with Ba2+/TiO2 and MCM-41 vol.14, pp.9, 2021, https://doi.org/10.3390/ma14092404
  173. Combinatorial Analysis of Sparse Experiments on Photocatalytic Performance of Cement Composites: A Route toward Optimizing Multifunctional Materials for Water Purification vol.37, pp.18, 2013, https://doi.org/10.1021/acs.langmuir.1c00654
  174. Plasmonics-Enhanced UV Photocatalytic Water Purification vol.125, pp.18, 2021, https://doi.org/10.1021/acs.jpcc.1c00613
  175. Synthesis of FeWO4 heterogeneous composite by the sol-gel process: enhanced photocatalytic activity on malachite green vol.133, pp.1, 2013, https://doi.org/10.1007/s11144-021-01994-x
  176. Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO vol.19, pp.1, 2013, https://doi.org/10.1007/s40201-021-00614-z
  177. Prospects of Synthesized Magnetic TiO2-Based Membranes for Wastewater Treatment: A Review vol.14, pp.13, 2021, https://doi.org/10.3390/ma14133524
  178. Preparation, characterization and photocatalytic degradation efficacy of bismuth oxide under visible and ultraviolet light vol.36, pp.14, 2013, https://doi.org/10.1557/s43578-021-00301-7
  179. Synthesis of Oxygen Deficient TiO2 for Improved Photocatalytic Efficiency in Solar Radiation vol.11, pp.8, 2021, https://doi.org/10.3390/catal11080904
  180. Photocatalytic Degradation of Plastic Waste: A Mini Review vol.12, pp.8, 2021, https://doi.org/10.3390/mi12080907
  181. Iron Modified Titanate Nanotube Arrays for Photoelectrochemical Removal of E. coli vol.11, pp.8, 2013, https://doi.org/10.3390/nano11081944
  182. Novel High Flux Poly(m-phenylene isophtalamide)/TiO2 Membranes for Ultrafiltration with Enhanced Antifouling Performance vol.13, pp.16, 2021, https://doi.org/10.3390/polym13162804
  183. 졸-겔 방법으로 합성된 TiO2 상안정성에 대한 pH 및 열처리 온도의 영향 vol.31, pp.4, 2013, https://doi.org/10.6111/jkcgct.2021.31.4.166
  184. Photocatalytic Degradation of Rhodamine B and Methylene Orange Using TiO2-ZrO2 as Nanocomposite vol.11, pp.9, 2013, https://doi.org/10.3390/catal11091035
  185. Supported TiO2 in Ceramic Materials for the Photocatalytic Degradation of Contaminants of Emerging Concern in Liquid Effluents: A Review vol.26, pp.17, 2013, https://doi.org/10.3390/molecules26175363
  186. Predicting the trend and utility of different photocatalysts for degradation of pharmaceutically active compounds: A special emphasis on photocatalytic materials, modifications, and performance compar vol.293, pp.None, 2013, https://doi.org/10.1016/j.jenvman.2021.112858
  187. Utilization of magnesium resources in salt lake brine and catalytic degradation of dye wastewater by doping cobalt and nickel vol.270, pp.None, 2021, https://doi.org/10.1016/j.seppur.2021.118808
  188. 2D Z-scheme TiO2/SnS2 heterojunctions with enhanced visible-light photocatalytic performance for refractory contaminants and mechanistic insights vol.45, pp.35, 2021, https://doi.org/10.1039/d1nj02247d
  189. Urea-Assisted Synthesis of Mesoporous TiO2 Photocatalysts for the Efficient Removal of Clofibric Acid from Water vol.14, pp.20, 2013, https://doi.org/10.3390/ma14206035
  190. Carbon‐Fiber Cloth Decorated with 3D Flower‐Like GO/WO3 Quantum Dots/TiO2 Microsphere with High Photocatalytic Activity under Natural Sunlight vol.38, pp.11, 2021, https://doi.org/10.1002/ppsc.202100177
  191. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices—a review vol.282, pp.None, 2013, https://doi.org/10.1016/j.chemosphere.2021.131056
  192. Controllable functionalization of g-C $ _{3}\mathrm{N}_{4}$ mediated all-solid-state (ASS) Z-scheme photocatalysts towards sustainable energy and environmental applications vol.24, pp.None, 2013, https://doi.org/10.1016/j.eti.2021.101972
  193. Water treatment via non-membrane inorganic nanoparticles/cellulose composites vol.50, pp.None, 2021, https://doi.org/10.1016/j.mattod.2021.03.024
  194. Water treatment via non-membrane inorganic nanoparticles/cellulose composites vol.50, pp.None, 2021, https://doi.org/10.1016/j.mattod.2021.03.024
  195. Ceramized Fabrics and Their Integration in a Semi-Pilot Plant for the Photodegradation of Water Pollutants vol.11, pp.11, 2013, https://doi.org/10.3390/catal11111418
  196. Facile Synthesis of Carbon- and Nitrogen-Doped Iron Borate as a Highly Efficient Single-Component Heterogeneous Photo-Fenton Catalyst under Simulated Solar Irradiation vol.11, pp.11, 2021, https://doi.org/10.3390/nano11112853
  197. Synthesis of novel ZnO/Geopolymer nanocomposite photocatalyst for degradation of congo red dye under visible light vol.16, pp.None, 2013, https://doi.org/10.1016/j.enmm.2021.100521
  198. Investigating and correlating photoelectrochemical, photocatalytic, and antimicrobial properties of $$\hbox {TiO}_2$$ nanolayers vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-01165-x
  199. Floating Carbon-Doped TiO2 Photocatalyst with Metallic Underlayers Investigation for Polluted Water Treatment under Visible-Light Irradiation vol.11, pp.12, 2021, https://doi.org/10.3390/catal11121454
  200. Synthesis of Nanostructured TiO2 Microparticles with High Surface Area vol.11, pp.12, 2013, https://doi.org/10.3390/catal11121512
  201. Recent Advances in the Catalytic Applications of Lanthanide-Oxo Clusters vol.7, pp.12, 2013, https://doi.org/10.3390/magnetochemistry7120161
  202. Photocatalytic activities enhancement of manganese doped ZnO by decoration on CNT for degradation of organic pollutants under solar irradiation vol.128, pp.1, 2013, https://doi.org/10.1007/s00339-021-05160-x
  203. Stochastic population balance methods for detailed modelling of flame-made aerosol particles vol.159, pp.None, 2013, https://doi.org/10.1016/j.jaerosci.2021.105895
  204. Characterization of the piezoelectric lead zirconate titanate catalyzed degradation of rhodamine B and methylene blue dyes by smartphone-based colorimetry vol.50, pp.1, 2022, https://doi.org/10.1080/10739149.2021.1960370
  205. In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes vol.430, pp.p4, 2013, https://doi.org/10.1016/j.cej.2021.132976
  206. Synthesis, characterization, and photocatalytic performance of Cu/Y co-doped TiO2 nanoparticles vol.277, pp.None, 2013, https://doi.org/10.1016/j.matchemphys.2021.125558
  207. Novel N,C,S-TiO2/WO3/rGO Z-scheme heterojunction with enhanced visible-light driven photocatalytic performance vol.610, pp.None, 2013, https://doi.org/10.1016/j.jcis.2021.12.050
  208. Modulation of electric dipoles inside electrospun BaTiO3@TiO2 core-shell nanofibers for enhanced piezo-photocatalytic degradation of organic pollutants vol.93, pp.None, 2013, https://doi.org/10.1016/j.nanoen.2021.106841