DOI QR코드

DOI QR Code

Corrosion and scale inhibition of low carbon steel in cooling water system by 2-propargyl-5-o-hydroxyphenyltetrazole

  • Dkhireche, N. (Laboratoire de Mate'riaux, d'Electrochimie et d'Environnement, Faculte des Sciences, Universite Ibn Tofail) ;
  • Dahami, A. (Laboratoire de Mate'riaux, d'Electrochimie et d'Environnement, Faculte des Sciences, Universite Ibn Tofail) ;
  • Rochdi, A. (Laboratoire de Mate'riaux, d'Electrochimie et d'Environnement, Faculte des Sciences, Universite Ibn Tofail) ;
  • Hmimou, J. (Laboratoire de Synthese Organique et Procedes d'Extraction, Faculte des Sciences, Universite Ibn Tofail) ;
  • Touir, R. (Laboratoire de Mate'riaux, d'Electrochimie et d'Environnement, Faculte des Sciences, Universite Ibn Tofail) ;
  • Ebn Touhami, M. (Laboratoire de Mate'riaux, d'Electrochimie et d'Environnement, Faculte des Sciences, Universite Ibn Tofail) ;
  • El Bakri, M. (Laboratoire de Mate'riaux, d'Electrochimie et d'Environnement, Faculte des Sciences, Universite Ibn Tofail) ;
  • El Hallaoui, A. (Laboratoire de Chimie Organique, Faculte des Sciences Dhar El Mahraz, Universite Sidi Mohamed Ben Abdellah) ;
  • Anouar, A. (Laboratoire de Chimie Organique, Faculte des Sciences Dhar El Mahraz, Universite Sidi Mohamed Ben Abdellah) ;
  • Takenouti, H. (Laboratoire Interfaces et Systemes Electrochimiques, Universite Paris)
  • Received : 2013.01.12
  • Accepted : 2013.03.12
  • Published : 2013.11.25

Abstract

The 2-propargyl-5-o-hydroxyphenyltetrazole (PHPT) has been tested as corrosion inhibitor for low carbon steel in simulated cooling water. The polarization curves showed that PHPT acts as mixed-type inhibitor. Its inhibition efficiency was found to enhance with increase of the inhibitor concentration and immersion time due to the formation of the inhibitor film on the metal surface as indicated by electrochemical impedance spectroscopy measurements. To complete the formulation further, a non oxidizing biocide was added. Its presence with PHPT does not affect its inhibitory performance and it can be served as a basic component of the formulation for cooling water system.

Keywords

References

  1. J.K. Kim, R. Smith, Chemical Engineering Science 56 (2001) 3641. https://doi.org/10.1016/S0009-2509(01)00091-4
  2. H. Zeng, J. Lin, C. Ye, L. Tong, X. Chen, F. Yu, Journal of Electromagnetic Analysis and Applications 1 (2009) 6. https://doi.org/10.4236/jemaa.2009.11002
  3. S. Deng, X. Li, H. Fu, Corrosion Science 53 (2011) 822. https://doi.org/10.1016/j.corsci.2010.11.019
  4. M. Cenoui, N. Dkhireche, O. Kassou, M. Ebn Touhami, R. Touir, A. Dermaj, N. Hajjaji, Journal of Materials and Environmental Science 1 (2) (2010) 84.
  5. B. Labriti, N. Dkhireche, R. Touir, M. Ebn Touhami, M. Sfaira, A. El Hallaoui, B. Hammouti, A. Alami, Arabian Journal for Science and Engineering 37 (2012) 1293. https://doi.org/10.1007/s13369-012-0257-7
  6. P.K. Gogoi, B. Barhai, Chemistry International Journal 2 (2010) 138.
  7. E.M. Sherif, R.M. Erasmus, J.D. Comins, Corrosion Science 50 (2008) 3439. https://doi.org/10.1016/j.corsci.2008.10.002
  8. K.F. Khaled, M.M. Al-Qahtani, Materials Chemistry and Physics 113 (2009) 150. https://doi.org/10.1016/j.matchemphys.2008.07.060
  9. S. Deng, X. Li, H. Fu, Corrosion Science 52 (2010) 3840. https://doi.org/10.1016/j.corsci.2010.07.020
  10. F. Zucchi, G. Trabanelli, M. Fonsati, Corrosion Science 38 (1996) 2019. https://doi.org/10.1016/S0010-938X(96)00094-7
  11. Z. Khiati, A.A. Othman, M. Sanchez-Moreno, M.C. Bernard, S. Joiret, E.M.M. Sutter, V. Vivier, Corrosion Science 53 (2011) 3092. https://doi.org/10.1016/j.corsci.2011.05.042
  12. E.M. Sherif, R.M. Erasmus, J.D. Comins, Applied Electrochemistry 39 (2009) 83. https://doi.org/10.1007/s10800-008-9641-0
  13. E.M. Sherif, Materials Chemistry and Physics 129 (2011) 961. https://doi.org/10.1016/j.matchemphys.2011.05.043
  14. R. Touir, M. Cenoui, M. El Bakri, M. Ebn Touhami, Corrosion Science 50 (2008) 1530. https://doi.org/10.1016/j.corsci.2008.02.011
  15. R. Touir, N. Dkhireche, M. Ebn Touhami, M. Lakhrissi, B. Lakhrissi, M. Sfaira, Desalination 249 (2009) 922. https://doi.org/10.1016/j.desal.2009.06.068
  16. N. Dkhireche, R. Abdelhadi, M. Ebn Touhami, H. Oudda, R. Touir, M. Elbakri, M. Sfaira, B. Hammouti, O. Senhaji, R. Taouil, J. Int, Electrochemical Science 7 (2012) 5314.
  17. S. Ramesh, S. Rajeswari, Electrochimica Acta 49 (2004) 811. https://doi.org/10.1016/j.electacta.2003.09.035
  18. M. Saremi, C. Dehghanian, M. Mohammadi Sabet, Corrosion Science 48 (2006) 1404. https://doi.org/10.1016/j.corsci.2005.06.009
  19. Y. Aouine, H. Faraj, A. Alami, A. El Hallaoui, A. Elachqar, S. El Hajji, A. Kerbal, B. Labriti, J. Martinez, V. Rolland, Journal of Marine Heterocycle 7 (2008) 44.
  20. D.J. Choi, S.J. You, J.G. Kim, Materials Science Engineering A 335 (2002) 228. https://doi.org/10.1016/S0921-5093(01)01928-1
  21. G. Lancini, F. Parenti, Determination of the Minimal Inhibitory Concentration in Liquid, Springer, New York, 1988, p. 14.
  22. M. Stern, A.L. Geary, Journal of the Electrochemical Society 104 (1957) 56. https://doi.org/10.1149/1.2428496
  23. A. Bouckamp, Users Manual Equivalent Circuit, Ver. 4.51, 1993.
  24. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, 1974.
  25. H.J. Flitt, D.P. Schweinsberg, Corrosion Science 47 (2005) 3034. https://doi.org/10.1016/j.corsci.2005.06.014
  26. D.A. Jones, Principles and Prevention of Corrosion, Macmillan, New York, 1992, p. 96.
  27. A. Harris, A. Marshall, Corrosion Prevention and Control 8 (17) (1980).
  28. A. Majjane, D. Rair, A. Chahine, M. Et-tabirou, M. Ebn Touhami, R. Touir, Corrosion Science 60 (2012) 98. https://doi.org/10.1016/j.corsci.2012.04.006
  29. A. Ostovari, S.M. Hoseinieh, M. Peikari, S.R. Shadizadeh, S.J. Hashemi, Corrosion Science 51 (2009) 1935. https://doi.org/10.1016/j.corsci.2009.05.024
  30. H. Gerengi, K. Schaefer, H. Ibrahim Sahin, Journal of Industrial and Engineering Chemistry 18 (2012) 2204. https://doi.org/10.1016/j.jiec.2012.06.019
  31. J. Creus, H. Idrissi, H. Mazille, F. Sanchette, P. Jacquot, Thin Solid Films 346 (1999) 150. https://doi.org/10.1016/S0040-6090(98)01742-8
  32. M. Duprat, M.C. Lafont, F. Moran, F. Dabosi, Electrochimica Acta 30 (1985) 353. https://doi.org/10.1016/0013-4686(85)80196-1
  33. B. Assouli, Z.A. Ait chikh, H. Idrissi, A. Srhiri, Polymer 42 (2001) 2449. https://doi.org/10.1016/S0032-3861(00)00578-4
  34. R. Touir, N. Dkhireche, M. Ebn Touhami, M. Sfaira, O. Senhaji, J.J. Robin, B. Boutevin, M. Cherkaoui, Materials Chemistry and Physics 122 (2010) 1. https://doi.org/10.1016/j.matchemphys.2010.02.063
  35. Gamal K. Gomma, Materials Chemistry and Physics 56 (1998) 27. https://doi.org/10.1016/S0254-0584(98)00086-8
  36. M. Bouklah, B. Hammouti, M. Lagrenee, F. Bentiss, Corrosion Science 48 (2006) 2831. https://doi.org/10.1016/j.corsci.2005.08.019
  37. P. Gimenez, D. Petit, M. Badia, Materials Science Forum 8 (1986) 315. https://doi.org/10.4028/www.scientific.net/MSF.8.315
  38. I. Epelboin, P. Morel, H. Takenouti, Journal of the Electrochemical Society 118 (1971) 1282. https://doi.org/10.1149/1.2408306
  39. R. Touir, N. Dkhireche, M. Ebn Touhami, M. El Bakri, A.H. Rochdi, R. Allah Belakhmima, Journal of Saudi Chemical Society (2011), http://dx.doi.org/ 10.1016/j.jscs.2011.10.020.

Cited by

  1. Effects of Solution Hydrodynamics on Corrosion Inhibition of Steel by Citric Acid in Cooling Water vol.23, pp.8, 2014, https://doi.org/10.1007/s11665-014-1047-z
  2. Tests of Imidazoline-Based Corrosion Inhibitors for Low-Carbon Steel Tending to Absorb Hydrogen in Acidic Media vol.51, pp.3, 2013, https://doi.org/10.1007/s10553-015-0599-4
  3. Preparation of bi‐modified amphoteric oligochitosan derivatives and electrochemical evaluation on anticorrosion performances vol.132, pp.13, 2015, https://doi.org/10.1002/app.41714
  4. Study of corrosion of copper in industrial cooling systems vol.6, pp.5, 2013, https://doi.org/10.1108/ijsi-10-2013-0039
  5. Tartaric Acid as a Non-toxic and Environmentally-Friendly Anti-scaling Material for Using in Cooling Water Systems: Electrochemical and Surface Studies vol.25, pp.10, 2013, https://doi.org/10.1007/s11665-016-2310-2
  6. Anti-Corrosion Characteristics of Electrodeposited Self-Doped Polyaniline Films on Mild Steel in Low Acidity vol.8, pp.5, 2018, https://doi.org/10.3390/coatings8050155
  7. Galvanic Corrosion of Steel in Agitated Vessels Used in Fertilizer Industry vol.53, pp.2, 2019, https://doi.org/10.1134/s0040579519020015
  8. Experimental and theoretical evaluation of two benzimidazole derivatives for steel corrosion protection in HCl vol.14, pp.5, 2013, https://doi.org/10.1002/apj.2349
  9. Synthesis, scale inhibition and dispersion performance evaluation of the environmentally benign additive IA-AMPS-APEG copolymer vol.5, pp.10, 2013, https://doi.org/10.1039/c9ew00506d
  10. New Heterocyclic Derivative to Stop Carbon Steel Corrosion vol.234, pp.1, 2013, https://doi.org/10.1515/zpch-2019-1399
  11. Influence of pH on corrosion behavior of carbon steel in simulated cooling water containing scale and corrosion inhibitors vol.71, pp.8, 2020, https://doi.org/10.1002/maco.202011516
  12. New Propargyl-Containing Derivatives of Phosphoric and Phosphonic Acids: Prospective Inhibitors of Acidic Corrosion of Steels for Oil Production vol.93, pp.8, 2013, https://doi.org/10.1134/s1070427220080054
  13. A novel green corrosion inhibitor based on task-specific benzimidazolium ionic liquid for carbon steel in HCl vol.55, pp.7, 2013, https://doi.org/10.1080/1478422x.2020.1766863
  14. Synthesis, Characterization, and Computational Chemical Study of Aliphatic Tricationic Surfactants as Corrosion Inhibitors for Metallic Equipment in Oil Fields vol.5, pp.41, 2020, https://doi.org/10.1021/acsomega.0c03432
  15. Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures - A review vol.265, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2020.129075