DOI QR코드

DOI QR Code

Climate Change in the 21st Century Simulated by HadGEM2-AO under Representative Concentration Pathways

  • Baek, Hee-Jeong (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Lee, Johan (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Lee, Hyo-Shin (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Hyun, Yu-Kyung (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Cho, ChunHo (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kwon, Won-Tae (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Marzin, Charline (Met office Hadley Centre) ;
  • Gan, Sun-Yeong (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Min-Ji (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Choi, Da-Hee (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Lee, Jonghwa (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Lee, Jaeho (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Boo, Kyung-On (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kang, Hyun-Suk (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Byun, Young-Hwa (National Institute of Meteorological Research, Korea Meteorological Administration)
  • Received : 2012.07.30
  • Accepted : 2013.04.15
  • Published : 2013.11.30

Abstract

We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are $+1.1^{\circ}C/+2.1%$ for RCP2.6, $+2.4^{\circ}C/+4.0%$ for RCP4.5, $+2.5^{\circ}C/+3.3%$ for RCP6.0 and $+4.1^{\circ}C/+4.6%$ for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3oC between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.

Keywords

References

  1. Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.
  2. Arora, V. K., J. F. Scinocca, G. J. Boer, J. R. Christian, K. L. Denman, G. M. Flato, V. V. Kharin, W. G. Lee, and W. J. Merryfield, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi: 10.1029/2010GL046270.
  3. Arzel, O., T. Ficheft, and H. Goosse, 2006: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Modeling, 12, 401-415. https://doi.org/10.1016/j.ocemod.2005.08.002
  4. Baek, H.-J., C. Cho, W.-T. Kwon, S.-K. Kim, J.-Y. Cho, and Y.Kim, 2011: Development strategy for new climate change scenarios based on RCP. Climate Change Res., 2, 55-68 (in Korean with English abstract). https://doi.org/10.3724/SP.J.1248.2011.00055
  5. Bellouin, N., O. Boucher, J. Haywood, C. Johnson, A. Jones, J. Rae, and S. Woodward, 2007: Improved representation of aerosols for HadGEM2. Met Office Hadley Centre, Technical Note 73.
  6. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res.-Atm., 111(D12), D12106, doi:1018 10.1029/2005JD006548
  7. Bryan, K. 1969: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 4, 347-376. https://doi.org/10.1016/0021-9991(69)90004-7
  8. Cavalieri, D. J., C. L. Parkinson, P. Gloersen, J. C. Comiso, and H. J. Zwally, 1999: Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res., 104, 15,803-15,814. https://doi.org/10.1029/1999JC900081
  9. Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos. Chem. Phys. Discuss., 11, 10875-10933, doi:10.5194/acpd-11-10875-2011.
  10. Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model HadGEM2. Geosci. Model Dev. Discuss., 4, 997- 1062, doi:10.5194/gmdd-4-997-2011
  11. Cox, M. D., 1984: A primitive equation, three dimensional model of the ocean. Ocean Group Tech. Rep. GFDL, Princeton, NJ, 143 pp.
  12. Dufresne, J.-L., and Coauthors, 2013: Climate change projections using IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dyn., 40, 2123-2165, doi:10.1007/s00382-012-1636-1
  13. Gan, S.-Y., H.-S. Lee, M.-J. Kim, H.-J. Baek, and C. Cho, 2011: Evaluation of the HadGEM2-AO by present climate simulation for IPCC AR5 and CMIP5, Abstract, AOGS 2011 8th Annual Meeting, Taipei, Taiwan, Asia Oceania Geo. Soc..
  14. Gregory, J. M., P. A. Stott, D. J. Cresswell, N. A. Rayner, C. Gordon, and D. M. H. Sexton, 2002: Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett., 29, 2175, doi:10.1029/2001GL014575.
  15. Held, I. M. and B. J. Soden, 2006: Robust response of the hydrological cycle to global warming. J. Climate, 19, 5686-5699. https://doi.org/10.1175/JCLI3990.1
  16. Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109,117-161, DOI 10.1007/s10584-011-0153-2.
  17. International CLIVAR Project office, 2008, Report of the 11th Session of the JSC/CLIVAR Working Group on Coupled Modelling (WGCM). CLIVAR Publication Series No. 132, 54pp.
  18. IPCC, 1997: IPCC Special Report on The Regional Impacts of Climate Change: An assessment of vulnerability [Watson, R. T., M. C. Zinyoweara, and R. H. Moss (eds)]. Cambridge Unversity Press, Cambridge, United Kingdom.
  19. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, New York.
  20. Johns, T. C., and Coauthors, 2006: The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations. J. Climate, 19, 1302- 1328. https://doi.org/10.1175/JCLI3713.1
  21. Jones, C. D., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model dev., 4, 543-570, doi: 10.5.5194/gmd-4-543-2011.
  22. Kim, J., and T. Reichler, 2011: Regional Performance Skill of Coupled Models in Simulating Present-day Mean Climate. Proceedings of the international workshop on COREDEX-EAST Asia
  23. Kim, M.-J., S.-Y. Gan, H.-S. Lee, H.-J. Baek, and C. Cho, 2011: Evaluation of the East Asian monsoon simulation in HadGEM2-AO for the IPCC AR5 and the CMIP5, Abstract, AOGS 2011 8th Annual Meeting. Taipei, Taiwan, Asia Oceania Geo. Soc.
  24. Klein Goldewijk, K., A. Beusen, G. van Drecht, and M. de Vos, 2011: The HYDE 3.1 spatially explicit database of human induced land use change over the past 12,000 years. Global Ecol. Biogeogr., 20, 73-86. https://doi.org/10.1111/j.1466-8238.2010.00587.x
  25. Lean, J. L., 2009: Calculations of Solar Irradiance: monthly means from 1882 to 2008, annual means from 1610 to 2008. http://www.geo.fuberlin. de/en/met/ag/strat/forschung/ SOLARIS/Input data/.
  26. Lee, H.-S., S.-Y. Gan, H.-J. Baek, and C. Cho, 2010: Evaluation of the preindustrial simulation of HadGEM2-AO. Proc., The Autumn Meeting of KMS, 2010. Busan, Korea, Korean Meteor. Soc., 146-147.
  27. Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys Res.-ocean, 85 (C10), 5529-5554, doi:10.1029/JC085iC10p05529.
  28. Martin, G. M, M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre global environmental model (HADGEM1), Part I: Model description and global climatology. J. Climate, 19, 1274-1301. https://doi.org/10.1175/JCLI3636.1
  29. Martin, G. M, M. A. Ringer, and R. C. Levine, 2012: The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family. Earth Syst. Dynam., 3, 245-261, doi:10.5194/esd-3-245-2012.
  30. The HadGEM2 Development Team: Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model Climate configurations, Geosci. Model Dev. Discuss., 4, 765-841, doi: 10.5194/ gmdd-4-765-2011.
  31. McLaren, A. J. and J. K. Ridley, 2005: The Sea Ice Model. Unified Model Doc. Paper 45, 46 pp.
  32. Meehl, G. A., and Coauthors, 2007: Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge Unversity Press, Cambridge, United Kingdom and New York, NY, USA.
  33. Meehl, G. A, and Coauthors, 2012, Climate system response to external forcings and climate change projections in CCSM4. J. Climate, doi: 10.1175/JCLI-D-11-00240.1.
  34. Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic change (Special issue), doi: 10.1007/s10584-011-0148-z.
  35. Met Office, 2010: Advance: Improved science for mitigation policy advice. V. Pope, J. Lowe, Lizzie Kendon, F. Carroll, and S. Tempest, Eds., Met Office, Devon, UK, 16.
  36. Mitas, C. M. and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalysis. Geophys. Res. Lett., 33, L01810, doi:10.1029/2005GL024406.
  37. Moss, R., and Coauthors, 2008: Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Intergovernmental Panel on Climate Change, Geneva, 132 pp.
  38. Moss, R., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756. https://doi.org/10.1038/nature08823
  39. Nguyen, H., 2011: Observation of the Hadley cells. Presentation, Greenhouse 2011: The science of climate change, Cairns. Australia, http://www.greenhouse2011.com/ UserFiles/Presentation/PresentationUrl_ 35.pdf.
  40. Reichler T. and J. Kim, 2008: How well do coupled models simulate today's climate? Bull. Amer. Meteor. Soc., 89, 303-311. https://doi.org/10.1175/BAMS-89-3-303
  41. Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191- 219. https://doi.org/10.1029/1998RG000054
  42. Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850-1990. J. Geophys. Res., 98, 22987-22994. https://doi.org/10.1029/93JD02553
  43. Stott, P. A., G. S. Jones, J. A. Lowe, P. Thorne, C. Durman, T. C. Johns, and J.-C. Thelen, 2006: Transient climate simulations with the HadGEM1 climate model: causes of past warming and future climate change. J. Climate, 19, 2763-2782 https://doi.org/10.1175/JCLI3731.1
  44. Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier: 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, doi:10.1029/ 2012GL052676.
  45. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A Summary of the CMIP5 Experiment Design, http://www-pcmdi.llnl.gov/
  46. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2011: A Overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-11- 00094.1
  47. Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006, Going to the Extremes, An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185-211, doi: 10.1007/s10584-006-9051-4.
  48. Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327- 339. https://doi.org/10.1023/A:1005488920935
  49. Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123-138. https://doi.org/10.3354/cr00953
  50. van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5-31, doi;10.1007/ s10584-011-0148-z.
  51. Wu, P., R. Wood, J. Ridley, and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a $CO_2$ rampdown. Geophys. Res. Lett., 37, L12705, doi:10.1029/2010GL043730

Cited by

  1. The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family vol.3, pp.2, 2013, https://doi.org/10.5194/esd-3-245-2012
  2. The impact of land cover generated by a dynamic vegetation model on climate over East Asia in present and possible future climate vol.5, pp.2, 2013, https://doi.org/10.5194/esdd-5-1319-2014
  3. Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP vol.42, pp.3, 2013, https://doi.org/10.1007/s00382-013-1841-6
  4. HadGEM2-AO RCP8.5 모의에서 나타난 지구온난화 멈춤 vol.35, pp.4, 2013, https://doi.org/10.5467/jkess.2014.35.4.249
  5. Influence of aerosols in multidecadal SST variability simulations over the North Pacific vol.120, pp.2, 2015, https://doi.org/10.1002/2014jd021933
  6. Identifying potential areas of understorey coffee in Ethiopia’s highlands using predictive modelling vol.36, pp.11, 2015, https://doi.org/10.1080/01431161.2015.1051631
  7. The impact of land cover generated by a dynamic vegetation model on climate over east Asia in present and possible future climate vol.6, pp.1, 2013, https://doi.org/10.5194/esd-6-147-2015
  8. Changes of Early Summer Precipitation in the Korean Peninsula and Nearby Regions Based on RCP Simulations vol.28, pp.9, 2013, https://doi.org/10.1175/jcli-d-14-00504.1
  9. Uncertainty Assessment of Future High and Low Flow Projections According to Climate Downscaling and Hydrological Models vol.154, pp.None, 2016, https://doi.org/10.1016/j.proeng.2016.07.560
  10. Assessing Future Climate Changes in the East Asian Summer and Winter Monsoon Using Regional Spectral Model vol.a94, pp.None, 2013, https://doi.org/10.2151/jmsj.2015-051
  11. Phylogenetic analysis of niche divergence reveals distinct evolutionary histories and climate change implications for tropical carnivorous pitcher plants vol.22, pp.1, 2016, https://doi.org/10.1111/ddi.12382
  12. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea vol.165, pp.None, 2013, https://doi.org/10.1016/j.agwat.2015.12.003
  13. Evaluation of Empirical Statistical Downscaling Models’ Skill in Predicting Tanzanian Rainfall and Their Application in Providing Future Downscaled Scenarios vol.29, pp.9, 2013, https://doi.org/10.1175/jcli-d-15-0061.1
  14. Worsening of Heat Stress Due To Global Warming in South Korea Based on Multi-RCM Ensemble Projections : Worsening of heat stress in South Korea vol.122, pp.21, 2013, https://doi.org/10.1002/2017jd026731
  15. Understanding the influence of ENSO on the Great Plains low-level jet in CMIP5 models vol.51, pp.4, 2013, https://doi.org/10.1007/s00382-017-3970-9
  16. High-resolution ensemble projections and uncertainty assessment of regional climate change over China in CORDEX East Asia vol.22, pp.5, 2013, https://doi.org/10.5194/hess-22-3087-2018
  17. Brief communication: Solar radiation management not as effective as CO2 mitigation for Arctic sea ice loss in hitting the 1.5 and 2 °C COP climate targets vol.12, pp.10, 2013, https://doi.org/10.5194/tc-12-3355-2018
  18. Impacts of climate change on infestations of Dubas bug ( Ommatissus lybicus Bergevin) on date palms in Oman vol.6, pp.None, 2018, https://doi.org/10.7717/peerj.5545
  19. Heat Stress Changes over East Asia under 1.5° and 2.0°C Global Warming Targets vol.31, pp.7, 2018, https://doi.org/10.1175/jcli-d-17-0449.1
  20. Evaluation of CORDEX regional climate models in simulating temperature and precipitation over the Tibetan Plateau vol.11, pp.3, 2013, https://doi.org/10.1080/16742834.2018.1451725
  21. Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China vol.10, pp.8, 2018, https://doi.org/10.3390/w10081046
  22. Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation vol.39, pp.4, 2018, https://doi.org/10.5467/jkess.2018.39.4.327
  23. Predicting future frost damage risk of kiwifruit in Korea under climate change using an integrated modelling approach vol.38, pp.14, 2013, https://doi.org/10.1002/joc.5737
  24. Impact of climate change on the persistent turbidity issue of a large dam reservoir in the temperate monsoon region vol.151, pp.3, 2018, https://doi.org/10.1007/s10584-018-2322-z
  25. Vulnerability of megapodes (Megapodiidae, Aves) to climate change and related threats vol.45, pp.4, 2013, https://doi.org/10.1017/s0376892918000152
  26. Added value of dynamical downscaling for hydrological projections in the Chungju Basin, Korea vol.39, pp.1, 2019, https://doi.org/10.1002/joc.5825
  27. Identifying refugia and corridors under climate change conditions for the Sichuan snub‐nosed monkey ( Rhinopithecus roxellana ) in Hubei Province, China vol.9, pp.4, 2019, https://doi.org/10.1002/ece3.4815
  28. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China vol.570, pp.None, 2019, https://doi.org/10.1016/j.jhydrol.2018.12.055
  29. Multi-RCM near-term projections of summer climate extremes over East Asia vol.52, pp.7, 2013, https://doi.org/10.1007/s00382-018-4425-7
  30. Assessment of Agricultural Drought Considering the Hydrological Cycle and Crop Phenology in the Korean Peninsula vol.11, pp.5, 2013, https://doi.org/10.3390/w11051105
  31. Banana suitability and Fusarium wilt distribution in the Philippines under climate change vol.27, pp.3, 2013, https://doi.org/10.1007/s41324-019-00239-3
  32. Impact of the spatial variability of daily precipitation on hydrological projections: A comparison of GCM‐ and RCM‐driven cases in the Han River basin, Korea vol.33, pp.16, 2019, https://doi.org/10.1002/hyp.13469
  33. Future Change in Tropical Cyclone Activity over the Western North Pacific in CORDEX-East Asia Multi-RCMs Forced by HadGEM2-AO vol.32, pp.16, 2013, https://doi.org/10.1175/jcli-d-18-0575.1
  34. 2018 summer extreme temperatures in South Korea and their intensification under 3 °C global warming vol.14, pp.9, 2019, https://doi.org/10.1088/1748-9326/ab3b8f
  35. An Integrated Modeling Approach for Predicting Potential Epidemics of Bacterial Blossom Blight in Kiwifruit under Climate Change vol.35, pp.5, 2013, https://doi.org/10.5423/ppj.oa.05.2019.0140
  36. Case Study of HEC-RAS 1D-2D Coupling Simulation: 2002 Baeksan Flood Event in Korea vol.11, pp.10, 2013, https://doi.org/10.3390/w11102048
  37. Evaluation of CMIP5 ability to reproduce twentieth century regional trends in surface air temperature and precipitation over CONUS vol.53, pp.9, 2013, https://doi.org/10.1007/s00382-019-04875-1
  38. Future Changes in Rice Bioclimatic Growing Conditions in Portugal vol.9, pp.11, 2013, https://doi.org/10.3390/agronomy9110674
  39. Habitat Analysis of Endangered Korean Long-Tailed Goral (Naemorhedus caudatus raddeanus) with Weather Forecasting Model vol.11, pp.21, 2013, https://doi.org/10.3390/su11216086
  40. Identifying climate refugia and its potential impact on Tibetan brown bear ( Ursus arctos pruinosus ) in Sanjiangyuan National Park, China vol.9, pp.23, 2019, https://doi.org/10.1002/ece3.5780
  41. The Köppen‐Trewartha Climate‐Type Changes Over the CORDEX‐East Asia Phase 2 Domain Under 2 and 3 °C Global Warming vol.46, pp.23, 2013, https://doi.org/10.1029/2019gl085452
  42. Present and future suitability of the Lake Tana Biosphere Reserve in Ethiopia for the Nile monitor (Varanus niloticus) using the MaxEnt model vol.9, pp.1, 2020, https://doi.org/10.1186/s40068-020-00197-y
  43. Evaluation of summer precipitation over Far East Asia and South Korea simulated by multiple regional climate models vol.40, pp.4, 2013, https://doi.org/10.1002/joc.6331
  44. Impact of Climate Change on Potential Malaria Distribution in Venezuela vol.11, pp.1, 2013, https://doi.org/10.15531/ksccr.2020.11.1.11
  45. Implementation of U.K. Earth System Models for CMIP6 vol.12, pp.4, 2013, https://doi.org/10.1029/2019ms001946
  46. Simulated Biomass, Climate Change Impacts, and Nitrogen Management to Achieve Switchgrass Biofuel Production at Diverse Sites in U.S. vol.10, pp.4, 2020, https://doi.org/10.3390/agronomy10040503
  47. Modeling spatiotemporal distribution of Dipterocarpus turbinatus Gaertn. F in Bangladesh under climate change scenarios vol.39, pp.3, 2013, https://doi.org/10.1080/10549811.2019.1632721
  48. Current and Future Potential Distribution of the Xerophytic Shrub Candelilla (Euphorbia antisyphilitica) under Two Climate Change Scenarios vol.11, pp.5, 2013, https://doi.org/10.3390/f11050530
  49. Spatial Assessment of Water-Use Vulnerability under Future Climate and Socioeconomic Scenarios within a River Basin vol.146, pp.7, 2020, https://doi.org/10.1061/(asce)wr.1943-5452.0001235
  50. 기후변화시나리오와 비정상성 빈도분석을 이용한 도시유형별 목표연도 설계강우량 제시 및 치수안전도 변화 전망 vol.29, pp.9, 2020, https://doi.org/10.5322/jesi.2020.29.9.871
  51. Evaluation and Projection of Regional Climate over East Asia in CORDEX-East Asia Phase I Experiment vol.57, pp.1, 2013, https://doi.org/10.1007/s13143-020-00180-8
  52. Improving biological relevance of model projections in response to climate change by considering dispersal amongst lineages in an amphibian vol.48, pp.3, 2013, https://doi.org/10.1111/jbi.14019
  53. Modelling potential impact of climate change and uncertainty on streamflow projections: a case study vol.12, pp.2, 2013, https://doi.org/10.2166/wcc.2020.254
  54. Why we need to purify the air from carbon dioxide vol.815, pp.1, 2013, https://doi.org/10.1088/1755-1315/815/1/012006
  55. Application of Bias- and Variance-Corrected SST on Wintertime Precipitation Simulation of Regional Climate Model over East Asian Region vol.57, pp.3, 2013, https://doi.org/10.1007/s13143-020-00189-z
  56. Potential Distribution of Amphibians with Different Habitat Characteristics in Response to Climate Change in South Korea vol.11, pp.8, 2013, https://doi.org/10.3390/ani11082185
  57. Future climate change impacts on runoff of scarcely gauged Jhelum river basin using SDSM and RCPs vol.12, pp.7, 2013, https://doi.org/10.2166/wcc.2021.283
  58. A Novel Spatial Downscaling Approach for Climate Change Assessment in Regions With Sparse Ground Data Networks vol.48, pp.22, 2013, https://doi.org/10.1029/2021gl095729
  59. Projected impacts of climate change on snow leopard habitat in Qinghai Province, China vol.11, pp.23, 2013, https://doi.org/10.1002/ece3.8358
  60. Emergent Constraints on Future Expansion of the Indo‐Pacific Warm Pool vol.49, pp.1, 2013, https://doi.org/10.1029/2021gl097343