DOI QR코드

DOI QR Code

Probabilistic Modeling of Photovoltaic Power Systems with Big Learning Data Sets

대용량 학습 데이터를 갖는 태양광 발전 시스템의 확률론적 모델링

  • Cho, Hyun Cheol (School of Electrical and Electronic Engineering, Ulsan College) ;
  • Jung, Young Jin (School of Electrical and Electronic Engineering, Ulsan College)
  • 조현철 (울산과학대학교 전기전자공학부) ;
  • 정영진 (울산과학대학교 전기전자공학부)
  • Received : 2013.08.14
  • Accepted : 2013.09.16
  • Published : 2013.10.25

Abstract

Analytical modeling of photovoltaic power systems has been receiving significant attentions in recent years in that it is easy to apply for prediction of its dynamics and fault detection and diagnosis in advanced engineering technologies. This paper presents a novel probabilistic modeling approach for such power systems with a big data sequence. Firstly, we express input/output function of photovoltaic power systems in which solar irradiation and ambient temperature are regarded as input variable and electric power is output variable respectively. Based on this functional relationship, conditional probability for these three random variables(such as irradiation, temperature, and electric power) is mathematically defined and its estimation is accomplished from ratio of numbers of all sample data to numbers of cases related to two input variables, which is efficient in particular for a big data sequence of photovoltaic powers systems. Lastly, we predict the output values from a probabilistic model of photovoltaic power systems by using the expectation theory. Two case studies are carried out for testing reliability of the proposed modeling methodology in this paper.

태양광 발전 시스템의 해석적 모델링은 시스템의 동특성을 예측하거나 고장검출 및 진단 등과 같은 고급 공학 기술에 중요하게 적용할 수 있어 최근 많은 각광을 받고 있다. 본 논문은 대용량 학습 데이터를 갖는 태양광 발전 시스템에 대한 확률론적 모델링을 제시한다. 우선 태양광 일사량과 온도 입력 변수에 대한 태양광 시스템의 출력 전력과의 입출력 함수관계를 정의한다. 이 함수관계를 바탕으로 세 확률변수(일사량, 온도, 전력)에 대하여 조건부 확률 식으로 표현한다. 조건부 확률 분포 추정은 대용량 데이터 시스템에 적합한, 전체 표본 데이터 수 대비 관련 변수의 경우의 수에 대한 비율로 나타내었다. 추정한 확률분포를 통해 평균값 이론을 적용하여 시스템의 출력을 추정하게 된다. 본 논문에서 제안한 모델링 기법은 두 태양광 발전 단지의 사례 연구를 통해 성능을 검증하였다.

Keywords

References

  1. Hyun C. Cho, Kwan H. Lee, " Fault detection algorithm of photovoltaic power systems using stochastic decision making approach," Korean Signal & Systems Journal, vol. 12, no. 3, pp. 212-216, 2011.
  2. D. Sera, R. Teodorescu, "Photovoltaic module diagnostics by series resistance monitoring and temperature and rated power estimation," Annual Conference of IEEE, pp. 2195-2199, 2008.
  3. K.-H. Chaoa, S.-H. Hob, M.-H. Wanga, "Modeling and fault diagnosis of a photovoltaic system," Electric Power Systems Research, vol. 78, no. 1, pp. 97-105, 2008. https://doi.org/10.1016/j.epsr.2006.12.012
  4. A. Mellit, S. Kalogirou, "ANFIS-based modelling for photovoltaic power supply system: A case study," Renewable Energy, vol. 36, no. 1, pp. 250-258, 2011. https://doi.org/10.1016/j.renene.2010.06.028
  5. C. S. Chin, A. Babu, W. McBride, "Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink," Renewable Energy, vol. 36, no. 11, pp. 3075-3090, 2011. https://doi.org/10.1016/j.renene.2011.03.026
  6. Hyun C. Cho, "A study on dynamic modeling of photovoltaic power generator systems using probability and statistics theories," The Trans. of the Korean Institute of Electrical Engineers, vol. 61, no. 7, pp. 1007-1013, 2012. https://doi.org/10.5370/KIEE.2012.61.7.1007
  7. F. V. Jensen, T. D. Nielsen, Bayesian networks and decision graphs, Springer, 2007.
  8. Hyun Cheol Cho, Sami M. Fadali, Kwon S, Lee, "Online parameter estimation and convergence property of dynamic Bayesian networks," Int. Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 4, pp. 285-294, 2007. https://doi.org/10.5391/IJFIS.2007.7.4.285

Cited by

  1. Fault Location Diagnosis Technique of Photovoltaic Power Systems through Statistic Signal Process of its Output Power Deviation vol.63, pp.11, 2014, https://doi.org/10.5370/KIEE.2014.63.11.1545
  2. Big Data Analysis Using Principal Component Analysis vol.25, pp.6, 2015, https://doi.org/10.5391/JKIIS.2015.25.6.592
  3. Development of Daily PV Power Forecasting Models using ELM vol.64, pp.3, 2015, https://doi.org/10.5370/KIEEP.2015.64.3.164
  4. Development of PV Power Prediction Algorithm using Adaptive Neuro-Fuzzy Model vol.64, pp.4, 2015, https://doi.org/10.5370/KIEEP.2015.64.4.246
  5. Modeling of Photovoltaic Power Systems using Clustering Algorithm and Modular Networks vol.65, pp.2, 2016, https://doi.org/10.5370/KIEEP.2016.65.2.108
  6. Development of Fault Diagnosis Algorithm using Correlation Analysis and ELM vol.65, pp.3, 2016, https://doi.org/10.5370/KIEEP.2016.65.3.204