DOI QR코드

DOI QR Code

Two-Dimensional Localization Problem under non-Gaussian Noise in Underwater Acoustic Sensor Networks

비가우시안 노이즈가 존재하는 수중 환경에서 2차원 위치추정

  • Lee, DaeHee (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Yang, Yeon-Mo (School of Electronic Engineering, Kumoh National Institute of Technology)
  • 이대희 (금오공과대학교 전자공학과) ;
  • 양연모 (금오공과대학교 전자공학과)
  • Received : 2013.08.31
  • Accepted : 2013.09.25
  • Published : 2013.10.25

Abstract

This paper has considered the location estimation problem in two dimension space by using a non-linear filter under non-Gaussian noise in underwater acoustic sensor networks(UASNs). Recently, the extended Kalman filter (EKF) is widely used in location estimation. However, the EKF has a lot of problems in the non-linear system under the non-gaussian noise environment like underwater environment. In this paper, we propose the improved Two-Dimension Particle Filter (TDPF) using the re-interpretation distribution techniques based on the maximum likelihood (ML). Through the simulation, we compared and analyzed the proposed TDPF with the EKF under the non-Gaussian underwater sensor networks. Finally, we determined that the TDPF's result shows more accurate localization than EKF's result.

본 논문은 비가우시안 노이즈가 존재하는 수중환경에서 비선형 필터 기법에 따른 2차원 위치 추정에 관한 연구 내용이다. 최근 위치 추정을 위한 필터로 확장형 칼만필터(EKF: Extended Kalman filter)가 많이 사용되고 있다. 하지만, 수중과 같은 비가우시안 노이즈가 존재하는 비선형 시스템에서는 많은 문제점을 가지고 있다. 따라서 본 논문에서는 상태변이의 예측을 기반으로한 EKF를 대신하여 통계적 발생인자 에 기반을 둔 분포 재해석 기법을 이용한 2차원 파티클필터 (TDPF: Two-Dimension Particle Filter)를 제안한다. 모의 실험을 통하여 Non-Gaussian Noise 가 존재하는 수중환경에서 제안하는 TDPF의 성능을 EKF와 비교분석하였으며 TDPF가 EKF보다 정확한 위치 추정결과를 제공하는 것을 확인하였다.

Keywords

References

  1. D. Won, Y.-M. Yang, "A three-dimensional localization algorithm for underwater acoustic sensor networks", International Journal of Computational Vision and Robotics Vol.2, No.3, pp.218-236, 2011. https://doi.org/10.1504/IJCVR.2011.042840
  2. J. Park, Georgy Shevlyakov, K. Kim. "Maximin Distributed Detection in the Presence of Impulsive Alpha-Stable Noise." Wireless Communications, IEEE Trans. Vol. 10, pp.1687-1691, 2011. https://doi.org/10.1109/TWC.2011.040411.100333
  3. D. Lee, Y.-M. Yang, K, Huh, "Position Estimation of MBK system for non-Gaussian Underwater Sensor Networks," J. of the Inst. of Elecronics Engineers of Korea, Vol. 50, No. 1, pp. 232-238, 2013 https://doi.org/10.5573/ieek.2013.50.1.232
  4. J. Yuh, "Development in Underwater Robotics," Robotics and automation 1995 IEEE International Conference, Vol. 2, pp. 1862-1867, 1995.
  5. E. Kim, S. Lee, C. Kim, and K. Kim, "Mobile Beacon-Based 3DLocalization with Multidimensional Scaling in Large Sensor Networks," IEEE Comm. Letters, vol.14, no.7, pp.647-649, Jul. 2010. https://doi.org/10.1109/LCOMM.2010.07.100513
  6. E. Kim, S., C. Kim, K. Kim, "Long-range Beacons on Sea Surface based 3D-Localization for Underwater Sensor Networks", 2009 Fifth International Conference on Mobile Ad-hoc and Sensor Networks, pp.102-107, 2009.
  7. B. He; K. Yang; S. Zhao; Y. Wang, "Underwater simultaneous localization and mapping based on EKF and point features", ICMA, pp. 4845 - 4850, 2009.
  8. S. Thrun, "Probabilistic Algorithms in Robotics", AI Magazine Volume 21 Number 4, pp.93-109, 2000
  9. I. Kim, S. Kim, H. Kim, "Particle Filter Localization using Noisy Models", KIPS, pp. 27-30, 2012 https://doi.org/10.3745/KIPSTB.2012.19B.1.027
  10. H. Lee, H, Choi, H. Kim, S. Ma, J. Lee, H. Kim, "Robust Object Tracking in Mobile Robots using Object Features and On-line Learning based Particle Filter," J . of Inst. of Control, Robotics, Systems, Vol. 18, No. 6, pp. 562-570, 2012 https://doi.org/10.5302/J.ICROS.2012.18.6.562
  11. T. Kim, N. Ko, S. Nho, "Simultaneous Estimation of Landmark Location and Robot Pose Using Particle Filter Method,", J. of Korean Inst. of Intelligent Systems, Vol. 22, No. 3, pp.353-36, 2012 https://doi.org/10.5391/JKIIS.2012.22.3.353
  12. J. Park, G. Shevlyakov, and K. Kim, "Maximin Distributed Detection in the Presence of Impulsive Alpha-Stable Noise," IEEE Trans. On Wireless Comm., Vol. 10, No. 6, 2011
  13. J. Park, G. Shevlyakov, and K. Kim, "Distributed Detection and Fusion of Weak Signals in Fading Channels with Non-Gaussian Noises," IEEE Comm. Letters, Vol. 16, No. 2, 2012
  14. T. Maki, T. Matsuda, T. Sakamaki, T. Ura, J. Kojima, "Navigation Method for Underwater Vehicles Based on Mutual Acoustical Positioning With a Single Seafloor Station," IEEE J . of Oceanic Engineering, 38(1), pp. 167-177, 2013 https://doi.org/10.1109/JOE.2012.2210799

Cited by

  1. Measurement of DS-CDMA Propagation Distance in Underwater Acoustic Communication Considering Attenuation and Noise vol.15, pp.1, 2015, https://doi.org/10.5391/IJFIS.2015.15.1.20
  2. DSSS-based Channel Access Technique DS-CDMA for Underwater Acoustic Transmission vol.15, pp.1, 2015, https://doi.org/10.5391/IJFIS.2015.15.1.53
  3. UKF Localization of a Mobile Robot in an Indoor Environment and Performance Evaluation vol.25, pp.4, 2015, https://doi.org/10.5391/JKIIS.2015.25.4.361