DOI QR코드

DOI QR Code

Effect of Algal Fraction to Particulate Organic Matter in the Upper Regions of a Brackish Lake Sihwa

시화호 상류 기수역에서 입자성유기물에 대한 조류영향

  • Choi, Kwangsoon (K-water institute, Korea Water Resources Corporation) ;
  • Kim, Sea-Won (K-water institute, Korea Water Resources Corporation) ;
  • Kim, Dong-Sub (K-water institute, Korea Water Resources Corporation) ;
  • Heo, Woomyoung (Department of Environmental Engineering, Kang-won National University)
  • 최광순 (한국수자원공사 K-water연구원) ;
  • 김세원 (한국수자원공사 K-water연구원) ;
  • 김동섭 (한국수자원공사 K-water연구원) ;
  • 허우명 (강원대학교 환경공학과)
  • Received : 2013.09.27
  • Accepted : 2013.12.07
  • Published : 2013.12.31

Abstract

To estimate the effect of algae to particulate organic matter in the upper regions of brackish Lake Sihwa, temporal and spatial variations of particulate organic carbon (POC) and phytoplankton pigments (chlorophyll a; Chl-a, pheophytin-a; Pheo-a), and their relationships were studied at seven sites of the brackish regions from March to October 2005 and 2006. POC concentration varied from 1.0 to $76.6mgL^{-1}$ (mean $7.4mgL^{-1}$), with maximal concentrations occurring in the middle parts of the study area in spring of 2005 and 2006. Concentrations of Chl-a and Pheo-a varied from 1.3 to $942.9{\mu}gL^{-1}$ (mean $71.0{\mu}gL^{-1}$) and $1.4{\sim}1,545.5{\mu}gL^{-1}$ (mean $59.9{\mu}gL^{-1}$), respectively, and corresponded closely with variation in POC. During the study period Pheo-a concentration was 44.2% of total Chl-a, implying that non-living or inactive phytoplankton is also the important part of phytoplankton-derived POC in brackish regions of Lake Sihwa. From the positive linear relationships between POC and phytoplankton pigments (POC with Chl-a (r=0.93), total Chl-a (r=0.88), and Pheo-a (r=0.81)), it is suggested that phytoplankton was a significant component of POC in the upper regions of brackish Lake Sihwa. On the other hand, the ratios of POC/Chl-a and POC/total Chl-a (Chl-a+Pheo-a) were 82.9 and 35.9, respectively. The ratio of POC/total Chl-a is similar to those reported in previous studies, including 40~60 in estuaries. This study suggests that Pheo-a concentration is considered in estimation of POC concentration from phytoplankton pigments in aquatic systems with high content of Pheo-a, like an upper region of blackish Lake Sihwa.

해수와 담수가 공존하는 시화호 상류 기수역에서 입자성유기물에 대한 조류의 영향을 평가하기 위하여, 2005년과 2006년 3월부터 11월까지 기수역내 7개 지점을 대상으로 입자성유기탄소 (particulate organic carbon; POC), 식물플랑크톤 색소(chlorophyll a; Chl-a), pheophytin a; Pheo-a)의 시공간적 변동과 상관관계를 분석하였다. 조사기간 동안 POC 농도는 $1.0{\sim}76.6mgL^{-1}$ (평균 $7.4mgL^{-1}$)의 범위로 봄에 높은 계절변화를 보였으며, 염분성층이 강하고 고탁도층이 형성되는 중류부에서 높은 값을 보였다. 살아있는 식물플랑크톤의 현존량의 지표로 이용되는 Chl-a 농도는 $1.3{\sim}942.9{\mu}gL^{-1}$ (평균 $71.0{\mu}gL^{-1}$) 범위로 매우 높은 값을 보였고, 4월에 중류부에 최고치를 보여 POC와 유사한 변동을 보였다. 한편 Pheo-a 농도는 $1.4{\sim}1,545.5{\mu}gL^{-1}$ (평균 $59.9{\mu}gL^{-1}$)의 범위로, total Chl-a의 평균 44.2%로 죽거나 활성을 잃은 식물플랑크톤의 양이 많은 것으로 나타났다. POC 농도는 식물플랑크톤 색소와 강한 양의 상관(Chl-a (r=0.93), total Chl-a (r=0.88), >Pheo-a (r=0.81))을 보였는데, 이는 시화호 기수역에서 식물플랑크톤이 POC의 중요한 기원임을 시사한다. 한편 식물플랑크톤 색소와 POC와의 회귀식으로부터 POC/Chl-a 비(82.9)보다 POC/total Chl-a 비(35.9)가 하구에서 조사된 POC/Chl-a 비(40~60)에 더 유사한 것으로 나타났다. 그러므로 시화호 기수역과 같이 Pheo-a 농도가 높은 수역에서는 조류기원성 POC를 산정하거나 또는 수체의 POC 농도에 대한 식물플랑크톤의 기여도를 평가할 때 Chl-a 농도와 함께 Pheo-a 농도도 함께 고려할 필요가 있다.

Keywords

References

  1. Arin, L., X.A.G. Moran and M. Estrada. 2002. Phytoplankton size distribution and growth rates in the Alboran Sea (SW Mediterrancean): short term variablility related to mesoscale hydrodynamics. Journal of Plankton Research 24: 1019-1033. https://doi.org/10.1093/plankt/24.10.1019
  2. Berg, J.A. and R.I.E. Newell. 1986. Temporal and spatial variations in the composition of seston available to the suspension feeder Crassostrea virginica. Estuarine and Coastal Marine Science 23: 375-386. https://doi.org/10.1016/0272-7714(86)90034-X
  3. Bodineau, L., G. Thoumelin, V. Beghin and M. Wartel. 1998. Particulate organic matter composition in the Estuarine Turbidity Maxima (ETM) of the Seine River estuary. Hydrobiologia 373/374: 281-295. https://doi.org/10.1023/A:1017083924578
  4. Choi, K., S.W. Kim, D.S. Kim, Y.T. Oh, W.M. Heo, Y.K. Lee and Y.S. Park. 2008a. Temporal and spatial distributions of basic water quality in the upper regions of brackish Lake Sihwa with a limited water exchange. Korean Journal of Limnological Society 41: 1-10.
  5. Choi, K., S.W. Kim, D.S. Kim, W.M. Heo, Y.K. Lee, I.S. Hwang and H.J. Lee. 2008b. Eutrophication in the upper regions of brackish Lake Sihwa with a limited water exchange. Korean Journal of Limnological Society 41: 216-227.
  6. Colijn, F. 1982. Light absorption in the waters of the Ems-Dollard estuary and its consequences for growth of phytoplankton and microphytobenthos. Netherland Journal of Sea Research 21: 25-33.
  7. Eppley, R.W., W.G. Harrison, S.W. Chisholm and E. Stewart. 1977. Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. Journal of Marine Research 35: 671-696.
  8. Geider, R.J., H.L. MacIntyre and T.M. Kana. 1997. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series 148: 187-200. https://doi.org/10.3354/meps148187
  9. Heo, W.M., B. Kim and M.S. Jun. 1999. Evaluation of eutrophication of lagoons in the Eastern Coast of Korea. Korean Journal of Limnological Society 32: 141-151.
  10. Horne, A.J. and C.R. Goldman. 1994. Limnology. McGraw-Hill College. Singapore.
  11. Jonge, V.N.de. 1980. Fluctuation in the organic carbon to chlorophyll a ration for estuarine benthic diatom populations. Marine Ecology-Progress Series 2: 345-353. https://doi.org/10.3354/meps002345
  12. Kim, B., K. Choi, C. Kim, U.H. Kim and Y.H. Kim. 2000. Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Research 34: 3495-3504. https://doi.org/10.1016/S0043-1354(00)00104-4
  13. KOWACO (Korea Water Resources Corporation). 2006. Elementary survey and research for water quality improvement in Lake Sihwa. KOWACO.
  14. Kransner, S.W., M.J. Sclimenti and E.G. Means. 1994. Quality degradation: implication for DBP formation. Journal of American Water Works Association 86: 34-47.
  15. Lee, P.Y., C.K. Kang, W.J. Choi, W.C. Lee and H.S. Yang. 2001. Temporal and spatial variations of particulate organic matter in the southeastern coastal bays of Korea. Journal of Korean Fisheries Society 34: 57-69.
  16. Lee, Y.J., M.S. Kim, E.J. Won and K.H. Shin. 2006. An application of 13C tracer for the determination of size fractionated primary productivity in upper stream of Lake Shihwa. Korean Journal of Limnological Society 39: 93-99.
  17. Lorenzen, C.J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equation. Limnology and Oceanography 12: 343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  18. Magni, P. and S. Montani. 2000. Water chemistry variability in the lower intertidal zone of an estuary in the Seto Inland Sea, Japan: seasonal patterns of nutrients and particulate compounds. Hydrobiologia 432: 9-23. https://doi.org/10.1023/A:1004064917794
  19. Malone, T.C. 1977. Environmental regulation of phytoplankton productivity in the lower Hudson Estuary. Estuarine and Coastal Marine Science 5: 157-171. https://doi.org/10.1016/0302-3524(77)90014-7
  20. McLusky, D.S. and M. Elliott. 2004. The Estuarine Ecosystem: Ecology, Threats, and Management. Oxford University Press, New York.
  21. ME (Ministry of Environment). 1999. KEOM Standard Method for Water. ME.
  22. MMAF(Ministry of Maritime Affairs and Fisheries). 2005. The Project for Improvement of Marine Environment of Lake Sihwa. MMAF.
  23. MMAF(Ministry of Maritime Affairs and Fisheries). 2006. The Project for Improvement of Marine Environment of Lake Sihwa. MMAF.
  24. Nixon, S.W. 1990. Marine eutrophication: a growing international problem. Ambio 19: 101.
  25. Park, Y.C., J.K. Park, M.W. Han, S.K. Son, M.K. Kim and S.H. Huh. 1997. Biogeochemical study of dissolved organic and inorganic compounds under Oxic/Anoxic environment in Lake Shihwa. "The Sea" The Journal of the Korean Society of Oceanography 2: 53-68.
  26. Peterson, D.H. and J.F. Festa. 1984. Numerical simulation of phytoplankton productivity in partially mixed estuaries. Estuarine and Coastal Marine Science 19: 563-589. https://doi.org/10.1016/0272-7714(84)90016-7
  27. Shin, J.K., D.S. Kim and K.J. Cho. 2000. Dynamics of water environmental factors and phytoplankton before and after inflow of seawater in Shingwa Reservoir. Journal of the Environmental Sciences 9: 109-117.
  28. Tsutsumi, H. 2006. Critical events in the Ariake Bay ecosystem: Clam population collapse, red tides, and hypoxic bottom water. Plankton Benthos Research 1: 3-25. https://doi.org/10.3800/pbr.1.3
  29. Wetzel, R.G. 2001. Limnology. 3th ed., Academic Press, NewYork.