DOI QR코드

DOI QR Code

Biological conversion of methane to methanol

  • Park, Donghyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Jeewon (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2013.05.01

Abstract

The conversion of methane to methanol is important to economic utilization of natural/shale gas. Methanol is a valuable liquid fuel and raw material for various synthetic hydrocarbon products. Its industrial production is currently based on a two-step process that is energy-intensive and environmentally unfriendly, requiring high pressure and temperature. The biological oxidation of methane to methanol, based on methane monooxygenase activity of methanotrophic bacteria, is desirable because the oxidation is highly selective under mild conditions, but conversion rate and yield and stability of catalytic activity should be improved up to an industrially viable level. Since methanotrophic bacteria produce methanol as only a precursor of formaldehyde that is then used to synthesize various essential metabolites, the direct use of bacteria seems unsuitable for selective production of a large amount of methanol. There are two types of methane monooxygenase: soluble (sMMO) and particulate (pMMO) enzyme. sMMO consisting of three components (reductase, hydroxylase, and regulatory protein) features an $({\alpha}{\beta}{\gamma})_2$ dimer architecture with a di-iron active site in hydroxlase. pMMO, a trimer (pmoA, pmoB, and pmoC) in an ${\alpha}_3{\beta}_3{\gamma}_3$ polypeptide arrangement is a copper enzyme with a di-copper active site located in the soluble domain of pmoB subunit. Since the membrane transports electrons well and delivers effectively methane with increased solubility in the lipid bilayer, pMMO seems more rationally designed enzyme in nature than sMMO. The engineering/evolution/modification of MMO enzymes using various biological and chemical techniques could lead to an optimal way to reach the ultimate goal of technically and economically feasible and environmentally friendly oxidation of methane. For this, multidisciplinary efforts from chemical engineering, protein engineering, and bioprocess research sectors should be systematically combined.

Keywords

References

  1. BP Statistical Review of World Energy, June (2012).
  2. J. J. Conti, P. D. Holtberg, J. A. Beamon, S. A. Napolitano, A. M. Schaal and J.T. Turnure, Annual Energy Outlook 2012, U.S. Energy Information Administration, Washington DC (2012).
  3. R. A. Periana, D. J. Taube, E. R. Evitt, D.G. Loffler, P.R. Wentrcek, G. Voss and T. Masuda, Science, 259, 340 (1993). https://doi.org/10.1126/science.259.5093.340
  4. M.A. Culpepper and A. C. Rosenzweig, Crit. Rev. Biochem. Mol., 47, 483 (2012). https://doi.org/10.3109/10409238.2012.697865
  5. M. Khoshtinat, N. A. S. Amin and I. Noshadi, World Academy of Science, Eng. & Technol., 38, 354 (2010).
  6. G. A. Olah, Angew. Chem. Int. Ed., 44, 2636 (2005). https://doi.org/10.1002/anie.200462121
  7. J.W.M. H. Geerts, J. H. B. J. Hoebink and K. van der Wiele, Catal. Today, 6, 613 (1990). https://doi.org/10.1016/0920-5861(90)85059-W
  8. A. E. Shilov and G. B. Shul'in, Chem. Rev., 97, 2879 (1997). https://doi.org/10.1021/cr9411886
  9. N. R. Hunter, H. D. Gesser, L. A. Morton and P. S. Yarlagadda, Appl. Catal. A-gen, 57, 45 (1990). https://doi.org/10.1016/S0166-9834(00)80722-8
  10. G. S. Walker, J. A. Lapszewicz and G. A. Foulds, Catal. Today, 21, 519 (1994). https://doi.org/10.1016/0920-5861(94)80175-4
  11. T. J. Hall, J. S. J. Hargreaves, G. J. Hutchings, R.W. Joyner and S.H. Taylor, Fuel. Process. Thechnol., 42, 151 (1995).
  12. S. H. Taylor, J. S. J. Hargreaves, G. J. Hutchings, R.W. Joyner and C.W. Lembacher, Catal. Today, 42, 217 (1998). https://doi.org/10.1016/S0920-5861(98)00095-9
  13. O. Benlounes, S. Mansouri, C. Rabia and S. Hocine, J. Nat. Gas. Chem., 17, 309 (2008). https://doi.org/10.1016/S1003-9953(08)60070-5
  14. C. Hammond, M.M. Forde, M. H. A. Rahim, A. Thetford and Q. He, Angew. Chem. Int. Ed., 51, 5129 (2012). https://doi.org/10.1002/anie.201108706
  15. M.H.A. Rahim, M.M. Forde, R. L. Jenkins, C. Hammond and Q. He, Angew. Chem. Int. Ed., 52, 1280 (2013). https://doi.org/10.1002/anie.201207717
  16. C. J. Jones, D. Taube, V. R. Ziatdinov, R. A. Periana, R. J. Nielsen, J. Oxgaard and W. A. Goddard III, Angew. Chem. Int. Ed., 116, 4726 (2004). https://doi.org/10.1002/ange.200461055
  17. H. D. Gesser, N. R. Hunter and C. B. Prakash, Chem. Rev., 85, 235 (1985). https://doi.org/10.1021/cr00068a001
  18. S. S. Bharadwaj and L. D. Schmidt, Fuel. Process. Thechnol., 42, 109 (1995).
  19. N. R. Foster, Appl. Catal. A-gen, 19, 1 (1985). https://doi.org/10.1016/S0166-9834(00)82665-2
  20. Q. Zhang, D. He and Q. Zhu, J. Nat. Gas. Chem., 17, 24 (2008). https://doi.org/10.1016/S1003-9953(08)60021-3
  21. Q. Zhang, D. He and Q. Zhu, J. Nat. Gas. Chem., 12, 81 (2003).
  22. R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas and F. Schth, Angew. Chem. Int. Ed., 48, 6909 (2009). https://doi.org/10.1002/anie.200902009
  23. P. S. Casey, T. McAllister and K. Foger, Ind. Eng. Chem. Res., 33, 1120 (1994). https://doi.org/10.1021/ie00029a008
  24. L.M. Zhou, B. Xue, U. Kogelschatz and B. Eliasson, Plasma. Chem. Plasma. P, 18, 375 (1998). https://doi.org/10.1023/A:1021849503110
  25. L. Chen, X.W. Zhang, L. Huang and L. C. Lei, Chem. Eng. Process., 48, 1333 (2009). https://doi.org/10.1016/j.cep.2009.06.007
  26. D.W. Larkin, L. Zhou, L. L. Lobban and R.G. Mallinson, Ind. Eng. Chem. Res., 40, 5496 (2001). https://doi.org/10.1021/ie010298h
  27. R. L. Lieberman and A. C. Rosenzweig, Crit. Rev. Biochem. Mol., 39, 147 (2004). https://doi.org/10.1080/10409230490475507
  28. R. Whittenbury, K. C. Phillips and J. F. Wilkinson, J. Gen. Microbiol., 61, 205 (1970). https://doi.org/10.1099/00221287-61-2-205
  29. R. S. Hanson and T. E. Hanson, Microbiol. Rev., 60, 439 (1996).
  30. S. N. Dedysh, N. S. Panikov, W. Liesack, R. Grosskopf, J. Zhou and J.M. Tiedje, Science, 282, 281 (1998). https://doi.org/10.1126/science.282.5387.281
  31. V. N. Khmelenina, M.G. Kalyuzhnaya, N.G. Starostina, N. E. Suzina and Y. A. Trotsenko, Curr. Microbiol., 35, 257 (1997). https://doi.org/10.1007/s002849900249
  32. D.Y. Sorokin, B. E. Jones and J.G. Kuenen, Extremophiles, 4, 145 (2000). https://doi.org/10.1007/s007920070029
  33. L. Bodrossy, K. L. Kovaecs, I. R. McDonald and J. C. Murrell, Fems. Microbiol. Lett., 170, 335 (1999).
  34. J. P. Bowman, S. A. McCammon and J. H. Skerratt, Microbiology, 143, 1451 (1997). https://doi.org/10.1099/00221287-143-4-1451
  35. S. Vuilleumier, V. N. Khmelenina, F. Bringel and A. S. Reshetnikov, J. Bacteriol., 194, 551 (2012). https://doi.org/10.1128/JB.06392-11
  36. L.Y. Stein, S. Yoon, J. D. Semrau and A. A. DiSpirito, J. Bacteriol., 192, 6497 (2010). https://doi.org/10.1128/JB.01144-10
  37. A. Miyaji, Method. Enzymol., 495, 211 (2011). https://doi.org/10.1016/B978-0-12-386905-0.00014-0
  38. B. Gilbert, I. R. McDonald, R. finch, G. P. Stafford, A. K. Nielsen and J. C. Murrell, Appl. Environ. Microb., 66, 966 (2000). https://doi.org/10.1128/AEM.66.3.966-975.2000
  39. L.Y. Stein, F. Bringel, A. A. DiSpirito and S. Han, J. Bacteriol., 193, 2668 (2011). https://doi.org/10.1128/JB.00278-11
  40. I.R. McDonald, H. Uchiyama, S. Kambe, O. Yagi, and J. C. Murrell, Appl. Environ. Microb., 63, 1898 (1997).
  41. Y. Chen, A. Crombie, M. T. Rahman and S. N. Dedysh, J. Bacteriol., 192, 3840 (2010). https://doi.org/10.1128/JB.00506-10
  42. N. Ward, O. Larsen, J. Sakwa and L. Bruseth, Plos. Biol., 2, 1617 (2004).
  43. J. Colby, D. I. Stirling and H. Dalton, Biochem. J., 165, 395 (1977).
  44. M. Merkx, D. A. Kopp, M. H. Sazinsky, J. L. Blazyk, J. Muller and S. J. Lippard, Angew. Chem. Int. Ed., 40, 2782 (2001). https://doi.org/10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P
  45. R. Balasubramanian and A. C. Rosenzweig, Accounts. Chem. Res., 40, 573 (2007). https://doi.org/10.1021/ar700004s
  46. A. S. Hakemian and A. C. Rosenzweig, Annu. Rev. Biochem., 76, 223 (2007). https://doi.org/10.1146/annurev.biochem.76.061505.175355
  47. A. K. Nielsen, K. Gerdes, H. Degn and J. C. Murrell, Microbiology, 142, 1289 (1996). https://doi.org/10.1099/13500872-142-5-1289
  48. R. N. Patel, C. T. Hou, A. I. Laskin and A. Felix, Appl. Environ. Microb., 44, 1130 (1982).
  49. J. Green and H. Dalton, J. Biol. Chem., 260, 15795 (1985).
  50. B.G. Fox, W. A. Froland, J. E. Dege and J. D. Lipscomb, J. Biol. Chem., 264, 10023 (1989).
  51. S. Friedle, E. Reisner and S. J. Lippard, Chem. Soc. Rev., 39, 2768 (2010). https://doi.org/10.1039/c003079c
  52. C. E. Tinberg and S. J. Lippard, Accounts. Chem. Res., 44, 280 (2011). https://doi.org/10.1021/ar1001473
  53. S. M. Smith, S. Rawat, J. Telser, B.M. Hoffman, T. L. Stemmler and A. C. Rosenzweig, Biochemistry, 50, 10231 (2011). https://doi.org/10.1021/bi200801z
  54. R. Balasubramanian, S.M. Smith, S. Rawat, L. A. Yatsunyk, T. L. Stemmler and A. C. Rosenzweig, Nature, 465, 115 (2010). https://doi.org/10.1038/nature08992
  55. P. F. Dunfield, A. Yuryev, P. Senin and A.V. Smirnova, Nature, 450, 879 (2007). https://doi.org/10.1038/nature06411
  56. M. R. Hyman and P.M. Wood, Biochem. J., 212, 31 (1983).
  57. C. Scheutz, P. Kjeldsen, J. E. Bogner, A. D. Visscher, J. Gebert, H.A. Hilger, M. Huber-Humer and K. Spokas, Waste. Manage. Res., 27, 409 (2009). https://doi.org/10.1177/0734242X09339325
  58. Y. Jiang, P. C. Wilkins and H. Dalton, Biochim. Biophys. Acta, 1163, 105 (1993). https://doi.org/10.1016/0167-4838(93)90285-Y
  59. Y. Jiang and H. Dalton, Biochim. Biophys. Acta, 1201, 76 (1994). https://doi.org/10.1016/0304-4165(94)90154-6
  60. T. Yoshimoto, K. Takahashi, H. Nishimura, A. Ajima, Y. Tamaura and Y. Inada, Biotechnol. Lett., 6, 337 (1984). https://doi.org/10.1007/BF00138001
  61. Y. Inada, H. Nishimura, K. Takahashi, T. Yoshimoto, A. R. Saha and Y. Saito, Biochem. Biophys. Res. Commun., 131, 532 (1984).
  62. K. Takahashi, Y. Kodera, T. Yoshimoto, A. Ajima, A. Matsushima and Y. Inada, Biochem. Biophys. Res. Commun., 131, 532 (1985). https://doi.org/10.1016/0006-291X(85)91268-9
  63. A. Matsushima, M. Okada and Y. Inada, FEBS Lett., 178, 275 (1984). https://doi.org/10.1016/0014-5793(84)80615-8
  64. H. F. Gaertner and A. J. Puigserver, Prot. Struct. Funct. Genet, 3, 130 (1988).
  65. M.-T. Babonneau, R. Jacquier, R. Lazaro and P. Viallefont, Tetrahedron Lett., 30, 2787 (1989). https://doi.org/10.1016/S0040-4039(00)99125-1
  66. C. Pina, D. Clark and H. Blanch, Biotechol. Techniques, 3, 333 (1989). https://doi.org/10.1007/BF01875632
  67. H. F. Gaertner and A. J. Puigserver, Eur. J. Biochem., 181, 207 (1989). https://doi.org/10.1111/j.1432-1033.1989.tb14712.x
  68. G. Ljunger, P. Adlercreutz and B. Mattiasson, Biocatalysis, 7, 279 (1993). https://doi.org/10.3109/10242429308992100
  69. A. Abuchowski and F. F. Davis, Biochim. Biophys. Acta, 578, 41 (1979). https://doi.org/10.1016/0005-2795(79)90110-7
  70. A. Ferjancic, A. J. Puigserver and H. F. Gaertner, Biotechnol. Lett., 10, 101 (1988). https://doi.org/10.1007/BF01024634
  71. H. Lee, K. Takahashi, Y. Kodera, K. Owada, T. Tsuzuki, A. Matsushima and Y. Inada, Biotechnol. Lett., 10, 407 (1988).
  72. J. Souppe, M. Urrutigoity and G. Levesoue, Biochim. Biophys. Acta, 957, 254 (1988). https://doi.org/10.1016/0167-4838(88)90280-4
  73. J. Souppe, M. Urrutigoity and G. Levesoue, New J. Chem., 12, 503 (1989).
  74. K. Takahashi, A. Ajima, T. Yoshimoto and Y. Inada, Biochem. Biophys. Res. Commun., 125, 761 (1984). https://doi.org/10.1016/0006-291X(84)90604-1
  75. K. Takahashi, H. Nishimura, T. Yoshimoto, Y. Saito and Y. Inada, Biochem. Biophys. Res. Commun., 121, 261 (1984). https://doi.org/10.1016/0006-291X(84)90716-2
  76. K. Takahashi, H. Nishimura, T. Yoshimoto, M. Okada, A. Ajima, A. Matsushima, Y. Tamaura, Y. Saito and Y. Inada, Biotechnol. Lett., 6, 765 (1984). https://doi.org/10.1007/BF00134715
  77. M. Urrutigoity and J. Souppe, Biocatalysis, 2, 145 (1989). https://doi.org/10.3109/10242428909003655
  78. P. Wirth, J. Souppe, D. Tritsch and J.-F. Biellmann, Bioorganic Chem., 19, 133 (1991). https://doi.org/10.1016/0045-2068(91)90029-O
  79. T. Yoshimoto, A. Ritani, K. Ohwada, K. Takahashi, Y. Kodera, A. Matsushima, Y. Saito and Y. Inada, Biochem. Biophys. Res. Commun., 148, 876 (1987). https://doi.org/10.1016/0006-291X(87)90957-0
  80. A. Glieder, E. T. Farinas and F. H. Arnold, Nature, 20, 1135 (2002).
  81. S. J. Lee, M. S. McCormick, S. J. Lippard and U. S. Cho, Nature, 494, 380 (2013). https://doi.org/10.1038/nature11880
  82. D.W. Choi, W. E. Antholine, Y. S. Do, J. D. Semrau, C. J. Kisting, R.C. Kunz, D. Campbell, V. Rao, S. C. Hartsel and A. A. DiSpirito, Microbiology, 151, 3417 (2005). https://doi.org/10.1099/mic.0.28169-0
  83. S. S.-F. Yu, K. H.-C. Chen, M.Y.-H. Tseng, Y.-S. Wang, C.-F. Tseng, Y.-J. Chen, D.-S. Huang and S. I. Chan, J. Bacteriol., 185, 5915 (2003). https://doi.org/10.1128/JB.185.20.5915-5924.2003
  84. Z. Gou, X.-H. Xing, M. Luo, H. Jiang, B. Han, H. Wu, L. Wang and F. Zhang, FEMS Microbiol. Lett., 263, 136 (2006). https://doi.org/10.1111/j.1574-6968.2006.00363.x

Cited by

  1. 효소를 이용한 아실화 반응의 최근 동향과 전망 vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.716
  2. Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based Biorefineries vol.24, pp.12, 2014, https://doi.org/10.4014/jmb.1407.07070
  3. Gas-liquid mass transfer coefficient of methane in bubble column reactor vol.32, pp.6, 2013, https://doi.org/10.1007/s11814-014-0341-7
  4. Batch Conversion of Methane to Methanol Using Methylosinus trichosporium OB3b as Biocatalyst vol.25, pp.3, 2013, https://doi.org/10.4014/jmb.1412.12007
  5. Methane as a Resource: Can the Methanotrophs Add Value? vol.49, pp.7, 2013, https://doi.org/10.1021/es504242n
  6. Metabolic engineering in methanotrophic bacteria vol.29, pp.None, 2013, https://doi.org/10.1016/j.ymben.2015.03.010
  7. Methane hydroxylation by Methylosinus trichosporium OB3b: Monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor vol.21, pp.2, 2016, https://doi.org/10.1007/s12257-015-0762-0
  8. Activity of a Methanotrophic Consortium Isolated from Landfill Cover Soil: Response to Temperature, pH, CO2, and Porous Adsorbent vol.33, pp.10, 2013, https://doi.org/10.1080/01490451.2015.1123330
  9. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila vol.26, pp.4, 2016, https://doi.org/10.4014/jmb.1601.01013
  10. Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane vol.10, pp.6, 2013, https://doi.org/10.1002/bbb.1678
  11. Methanol Production from Biogas with a Thermotolerant Methanotrophic Consortium Isolated from an Anaerobic Digestion System vol.31, pp.3, 2013, https://doi.org/10.1021/acs.energyfuels.6b03471
  12. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation vol.7, pp.2, 2017, https://doi.org/10.1039/c6cy01879c
  13. Seasonal Variation in Abundance and Diversity of Bacterial Methanotrophs in Five Temperate Lakes vol.8, pp.None, 2013, https://doi.org/10.3389/fmicb.2017.00142
  14. Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH‐1 newly isolated from brewery waste sludge vol.92, pp.2, 2013, https://doi.org/10.1002/jctb.5007
  15. Bubble dynamic behaviours at various capillary orifices in a bioreactor with methane oxidizing bacteria suspension vol.96, pp.4, 2013, https://doi.org/10.1002/cjce.23016
  16. The Combination of Hydrogen and Methanol Production through Artificial Photosynthesis-Are We Ready Yet? vol.11, pp.16, 2013, https://doi.org/10.1002/cssc.201800731
  17. Unraveling reaction networks behind the catalytic oxidation of methane with H 2 O 2 over a mixed-metal MIL-53(Al,Fe) MOF catalyst vol.9, pp.33, 2013, https://doi.org/10.1039/c8sc02376j
  18. Sustainable biogas mitigation and value-added resources recovery using methanotrophs intergrated into wastewater treatment plants vol.17, pp.2, 2013, https://doi.org/10.1007/s11157-018-9464-3
  19. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains vol.2, pp.4, 2019, https://doi.org/10.1038/s41929-019-0255-1
  20. Bioaugmented methanol production using ammonia oxidizing bacteria in a continuous flow process vol.279, pp.None, 2013, https://doi.org/10.1016/j.biortech.2019.01.092
  21. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites vol.2, pp.6, 2013, https://doi.org/10.1038/s41929-019-0273-z
  22. Experimental investigation of coalescence behaviour of bubble pairs forming at capillary orifices submerged in bacterial suspension vol.97, pp.7, 2013, https://doi.org/10.1002/cjce.23460
  23. Combination of Chemo- and Biocatalysis: Conversion of Biomethane to Methanol and Formic Acid vol.9, pp.14, 2013, https://doi.org/10.3390/app9142798
  24. Population dynamics of methanogens and methanotrophs along the salinity gradient in Pearl River Estuary: implications for methane metabolism vol.104, pp.3, 2013, https://doi.org/10.1007/s00253-019-10221-6
  25. Approaches for Selective Oxidation of Methane to Methanol vol.10, pp.2, 2013, https://doi.org/10.3390/catal10020194
  26. Lipid accumulation capability of typical non‐acclimated activated sludge microbial consortia using methane gas as secondary carbon source vol.2, pp.4, 2013, https://doi.org/10.1002/eng2.12148
  27. Redox‐Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit vol.16, pp.34, 2013, https://doi.org/10.1002/smll.202001849
  28. EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion vol.22, pp.34, 2020, https://doi.org/10.1039/d0cp01257b
  29. Power-to-methanol process: a review of electrolysis, methanol catalysts, kinetics, reactor designs and modelling, process integration, optimisation, and techno-economics vol.5, pp.14, 2013, https://doi.org/10.1039/d1se00635e
  30. A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes vol.13, pp.20, 2013, https://doi.org/10.3390/su132011515