DOI QR코드

DOI QR Code

Transcriptional Analysis of Dehydrin1 Genes Responsive to Dehydrating Stress in Grapevines

  • Choi, Youn-Jung (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Hur, Youn Young (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Jung, Sung-Min (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kim, Se-Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Noh, Jung-Ho (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Park, Seo-Jun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Park, Kyo-Sun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Yun, Hae-Keun (Department of Horticultural Science, Yeungnam University)
  • Published : 2013.06.30

Abstract

Dehydrins (DHNs) are proteins that are induced under dehydrating stress conditions such as drought, cold, and salinity. We investigated the expression of the DHN1 genes over time after drought treatment for 14 days and subsequent rehydration in the Korean native species, Vitis flexuosa, main cultivars 'Campbell Early' (Vitis spp.) and 'Tamnara' (Vitis spp.). Two highly homologous dehydrins, DHN1a and DHN1b, were isolated from 'Campbell Early' and 'Tamnara' grapevines, but only DHN1a cDNA was cloned from V. flexuosa leaves. Amino acid sequences of DHN1 deduced from five cDNAs of DHN1a/b from three grapevines were of the YSK2-type having the Y-, S-, and K-domain. Analysis of expression using quantitative real-time polymerase chain reaction and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that expression of the DHN1a and DHN1b genes was induced earlier in V. flexuosa under drought stress conditions than in 'Campbell Early' and 'Tamnara' During drought stress, a large amount of DHN1a and DHN1b was continuously expressed. V. flexuosa could be a resource in stress-tolerant grape breeding for enhancing drought tolerance.

Keywords

References

  1. Allagulova, Ch.R., F.R. Gimalov, F.M. Shakirova, and V.A. Vakhitov. 2003. The plant dehydrins: Structure and putative functions. Biochemstry 68:945-951.
  2. Alsheikh, M.K., J. Svensson, and S.K. Randall. 2005. Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ. 28:1114-1122. https://doi.org/10.1111/j.1365-3040.2005.01348.x
  3. Bies-Etheve, N., P. Gaubier-Comella, A. Debures, E. Lasserre, E. Jobet, M. Raynal, R. Cooke, and M. Delseny. 2008. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol. Biol. 67:107-124. https://doi.org/10.1007/s11103-008-9304-x
  4. Chang, S., J. Puryear, and J. Cairmey. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. 11:113-116. https://doi.org/10.1007/BF02670468
  5. Choi, Y.J., H.K. Yun, K.S. Park, J.H. Noh, S.T. Jeong, H.J. Lee, and H.I. Jang. 2008. Screening gene expressed by Rhizobium vitis inoculation and salicylic acid treatment in grapevines using gene fishing. J. Japan Soc. Hort. Sci. 77:137-142. https://doi.org/10.2503/jjshs1.77.137
  6. Close, T.J. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97:795-903. https://doi.org/10.1111/j.1399-3054.1996.tb00546.x
  7. Close, T.J. 1997. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiol. Plant. 100: 291-296. https://doi.org/10.1111/j.1399-3054.1997.tb04785.x
  8. Cramer, G.R., A. Ergul, J. Grimplet, R.L. Tillett, E.A.R. Tattersall, M.C. Bohlman, D. Vincent, J. Sonderegger, J. Evans, C. Osborne, D. Quilici, K.A. Schlauch, D.A. Schooley, and J.C. Cushman. 2007. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Funct. Integr. Genomics 7:111-134. https://doi.org/10.1007/s10142-006-0039-y
  9. Danyluk, J., A. Perron, M. Houde, A. Limin, B. Flower., B. Nicole, and S. Fathey. 1998. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell. 10:623-638.
  10. Gouy, M., S. Guindon, and O. Gascuel. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27:221-224. https://doi.org/10.1093/molbev/msp259
  11. Hughes, S. and S.P. Graether. 2011. Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci. 20:42-50. https://doi.org/10.1002/pro.534
  12. Islam, M.S. and M.H. Wang. 2010. Expression patterns of an abiotic stress-inducible dehydrin gene, LeDhnT14, in tomato. Hort. Environ. Biotechnol. 51:556-561.
  13. Jaillon, O., J.M. Aury, B. Noel, A. Policriti, C. Clepet, A. Casagrande, N. Choisne, S. Aubourg, N. Vitulo, C. Jubin, A. Vezzi, F. Legeai, P. Hugueney, C. Dasilva, D. Horner, E. Mica, D. Jublot, J. Poulain, C. Bruyere, A. Billault, B. Segurens, M. Gouyvenoux, E. Ugarte, F. Cattonaro, V. Anthouard, V. Vico, C. Del Fabbro, M. Alaux, G. Di Gaspero, V. Dumas, N. Felice, S. Paillard, I. Juman, M. Moroldo, S. Scalabrin, A. Canaguier, I. Le Clainche, G. Malacrida, E. Durand, G. Pesole, V. Laucou, P. Chatelet, D. Merdinoglu, M. Delledonne, M. Pezzotti, A. Lecharny, C. Scarpelli, F. Artiguenave, M.E. Pe, G. Valle, M. Morgante, M. Caboche, A.F. Adam-Blondon, J. Weissenbach, F. Quetier, and P. Wincker. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463-467. https://doi.org/10.1038/nature06148
  14. Jensen, A., A. Goday, M. Figueras, A. Jessop, and M. Pages. 1998. Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J. 13:691-697. https://doi.org/10.1046/j.1365-313X.1998.00069.x
  15. Koag, M.C., R.D. Fenton, S. Wilkens, and J.C. Timothy. 2003. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131:309-316. https://doi.org/10.1104/pp.011171
  16. Lovisolo, C., I. Perrone, W. Hartung, and A. Schubert. 2008. An abscisic acid-related reduces transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytol. 180:642-651. https://doi.org/10.1111/j.1469-8137.2008.02592.x
  17. Liu, C.C., C.M. Li, B.G. Liu, S.J. Ge, X.M. Dong, W. Li, H.Y. Zhu, B.C. Wang, and C.P. Yang. 2012. Genome-wide identification and characterization of a dehydrin gene family in popular (Populus trichocarpa). Plant Mol. Biol. Rep. 30:848-859. https://doi.org/10.1007/s11105-011-0395-1
  18. McCutchan, J. and K.A. Shackel. 1992. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J. Am. Soc. Hort. Sci. 117:607-611.
  19. Pollefeys, P. and J. Bousquet. 2003. Molecular genetic diversity of the French-American grapevine hybrids cultivated in North America. Genome 46:1037-1048. https://doi.org/10.1139/g03-076
  20. Puhakainen, T., M.W. Hess, M. Pirjo, J. Svensson, P. Heino, and E.T. Palva. 2004. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54:743-753. https://doi.org/10.1023/B:PLAN.0000040903.66496.a4
  21. Qian, G., Y. Liu, D. Ao, F. Yang, and M. Yu. 2008. Differential expression of dehydrin genes in hull-less barley (Hordeum vulgare ssp. vulgare) depending on duration of dehydration stress. Can. J. Plant Sci. 88:899-906. https://doi.org/10.4141/CJPS08015
  22. Riera, M., M. Figueras, C. Lopez, A. Goday, and M. Pages. 2004. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc. Natl. Acad. Sci. USA. 101:9879-9884. https://doi.org/10.1073/pnas.0306154101
  23. Shinozaki, K. and K. Yamaguchi-Shinozaki. 2007. Gene networks involved in drought stress response and tolerance. J. Exp. Botany. 58:221-227.
  24. Shinozaki, K., K. Yamaguchi-Shinozaki, and M. Seki. 2003. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6:410-417. https://doi.org/10.1016/S1369-5266(03)00092-X
  25. Silvamani, E., A. Bahieldin, J.M. Wraith, T. Al-Niemi, W.E. Dyer, H.H.D. Ho, and R. Qu. 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155:1-9. https://doi.org/10.1016/S0168-9452(99)00247-2
  26. Suprunova, T., T. Krugman, T. Fahima, G. Chen, I. Shams, A. Korol, and E. Nevo. 2004. Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ. 27:1297-1308. https://doi.org/10.1111/j.1365-3040.2004.01237.x
  27. Tommasini, L., J.T. Svensson, E.M. Rodriguez, A. Wahid, M. Malatrasi, K. Kato, S. Wanamaker, J. Resnik, and T.J. Close. 2008. Dehydrin gene expression provides an indicator of low temperature and drought stress: Transcriptome-based analysis of barley (Hordeum vulgare L.). Funct. Integr. Genomics 8:387-405. https://doi.org/10.1007/s10142-008-0081-z
  28. Velasco, R., A. Zharkikh, M. Troggio, D.A. Cartwright, A. Cestaro, D. Pruss, M. Pindo, L.M. FitzGerald, S. Vezzulli, J. Reid, G. Malacarne, D. Iliev, G. Coppola, B. Wardell, D. Micheletti, T. Macalma, M. Facci, J.T. Mitchell, M. Perazzolli, G. Eldredge, P. Gatto, R. Oyzerski, M. Moretto, N. Gutin, M. Stefanini, Y. Chen, C. Segala, C. Davenport, L. Dematte, A. Mraz, J. Battilana, K. Stormo, F. Costa, Q. Tao, A. Si-Ammour, T. Harkins, A. Lackey, C. Perbost, B. Taillon, A. Stella, V. Solovyev, J.A. Fawcett, L. Sterck, K. Vandepoele, S.M. Grando, S. Toppo, C. Moser, J. Lanchbury, R. Bogden, M. Skolnick, V. Sgaramella, S.K. Bhatnagar, P. Fontana, A. Gutin, Y. Van de Peer, F. Salamini, and R. Viola. 2007. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One. 2:e1326. https://doi.org/10.1371/journal.pone.0001326
  29. Wang, X., H. Zhu, G. Jin, H. Liu, W. Wu, and J. Zhu. 2007. Genomescale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci. 172:414-420. https://doi.org/10.1016/j.plantsci.2006.10.004
  30. Xiao, H. and A. Nassuth. 2006. Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep. 25:968-977. https://doi.org/10.1007/s00299-006-0151-4
  31. Xu, D.P., X.L. Duan, B.Y. Wang, B.M. Hong, T.H.D. Ho, and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physol. 110:249-257.
  32. Yang, Y., M. He, Z. Zhu, S. Li, Y. Xu, C. Zhang, S.D. Singer, and Y. Wang. 2012. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 12:140. https://doi.org/10.1186/1471-2229-12-140

Cited by

  1. Expression of dehydrins, HSP70, Cu/Zn SOD, and RuBisCO in leaves of tobacco (Nicotiana tabacum L.) dihaploids under salt stress vol.52, pp.3, 2016, https://doi.org/10.1007/s11627-016-9752-y
  2. 포도나무 줄기혹병균에 대한 약용식물의 항균활성 및 병발생억제 vol.34, pp.4, 2013, https://doi.org/10.12972/kjhst.20160055
  3. Transcript profiling of native Korean grapevine species Vitis flexuosa exposed to dehydration and rehydration treatment vol.58, pp.1, 2017, https://doi.org/10.1007/s13580-017-0064-x
  4. GA3 application in grapes (Vitis vinifera L.) modulates different sets of genes at cluster emergence, full bloom, and berry stage as revealed by RNA sequence-based transcriptome analysis vol.18, pp.4, 2013, https://doi.org/10.1007/s10142-018-0605-0
  5. Differentially expressed genes during berry ripening in de novo RNA assembly of Vitis flexuosa fruits vol.60, pp.4, 2013, https://doi.org/10.1007/s13580-019-00148-2
  6. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture vol.47, pp.4, 2020, https://doi.org/10.1007/s11033-020-05363-0