DOI QR코드

DOI QR Code

Performance Improvement of an Air Source Heat Pump by Storage of Surplus Solar Energy in Greenhouse

온실 내 잉여 태양열을 이용한 공기열원 히트펌프 성능향상

  • Kwon, Jin Kyung (Energy & Environmental Engineering Division, National Academy of Agricultural Science, RDA) ;
  • Kang, Geum Chun (Energy & Environmental Engineering Division, National Academy of Agricultural Science, RDA) ;
  • Moon, Jong Pil (Energy & Environmental Engineering Division, National Academy of Agricultural Science, RDA) ;
  • Kang, Youn Ku (Energy & Environmental Engineering Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Chung Kil (Energy & Environmental Engineering Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Su Jang (Energy & Environmental Engineering Division, National Academy of Agricultural Science, RDA)
  • 권진경 (농촌진흥청 국립농업과학원 에너지환경공학과) ;
  • 강금춘 (농촌진흥청 국립농업과학원 에너지환경공학과) ;
  • 문종필 (농촌진흥청 국립농업과학원 에너지환경공학과) ;
  • 강연구 (농촌진흥청 국립농업과학원 에너지환경공학과) ;
  • 김충길 (농촌진흥청 국립농업과학원 에너지환경공학과) ;
  • 이수장 (농촌진흥청 국립농업과학원 에너지환경공학과)
  • Received : 2013.09.25
  • Accepted : 2013.10.15
  • Published : 2013.12.31

Abstract

A greenhouse heating system to improve heat pump performance using inside and outside air of greenhouse as a heat source selectively and cut $CO_2$ enrichment costs by delay of greenhouse ventilation was developed. In this system, thermal storage modes divided into inside circulation mode using surplus solar energy and outside circulation mode using outside air heat. The thermal storage modes were designed to be switched mutually according to inside greenhouse temperature and six temperature values were input to control the heat pump operating, thermal storage mode switching and greenhouse heating automatically. Operating characteristics of this system were tested in a plastic greenhouse of non-ventilation condition. The results of test showed that the inside circulation mode began at about 11:00 and lasted for about 210 minutes and inside greenhouse temperature was maintained between $20{\sim}28^{\circ}C$ in spite of non-ventilation. System heating COP of the inside circulation mode in the daytime was 3.35, which was 36% and 25% higher than that of the outside circulation modes in the nighttime and daytime respectively.

본 연구에서는 온실 내부의 태양 잉여열과 외부의 공기열을 선택적으로 열원으로 이용함으로써 히트펌프의 성능을 향상시키고, 온실의 환기 지연을 통해 이산화탄소 시용비용을 절감할 수 있는 온실 공조시스템을 개발하고자 하였다. 본 시스템의 축열 과정은 태양 잉여열을 이용하는 내부순환모드와 외기열을 이용하는 외부순환모드가 온실 내부온도에 따라 자동으로 절환되도록 구성하였으며, 히트펌프 가동, 축열모드 절환, 난방 가동을 위한 6개의 온도값을 입력함으로써 축열과 난방이 자동으로 수행되도록 설계하였다. 단동온실을 대상으로 무환기 조건에서 기초시험을 수행한 결과, 태양 잉여열을 이용한 축열은 약 11시부터 시작되어 평균 3시간 30분 정도 유지되었으며, 주간의 온실 내부온도는 환기를 수행하지 않음에도 대부분 약 $20{\sim}28^{\circ}C$ 범위를 유지하였다. 주간 내부순환모드에서 시스템의 난방성능계수는 약 3.35로 야간 외부순환모드의 2.46 및 주간 외부순환모드의 2.67에 비해 각각 36% 및 25% 향상됨을 확인하였다. 본 시스템의 개선사항으로 태양 잉여열의 효율적 이용을 위해 축열조 관리온도를 상승시킬 수 있는 고효율 히트펌프의 적용이 필요하며, 온실의 무환기 운용에 따른 과습환경의 조성을 방지하고 태양 잉여열 수준이 높은 시기에 온실의 온도상승을 방지하기 위해 강제환기를 운전모드에 추가할 필요가 있는 것으로 판단되었다.

Keywords

References

  1. Beshada, E., Q. Zhang, and R. Boris. 2006. Winter performance of a solar energy greenhouse in southern Manitoba. Canadian Biosystems Engineering 48:5.1-5.8.
  2. Gracia, J.L., De la Plaza, L.M. Narvas, R.M. Benavente, and L. Luna. 1998. Evaluation of the feasibility of alternative energy sources for greenhouse heating. J. Agric. Engng Res. 69:107-114. https://doi.org/10.1006/jaer.1997.0228
  3. Kang, Y.K., Y.S. Ryou, G.C. Kang, Y. Paek, and Y.J. Kim. 2007. Heating performance of horizontal geothermal heat pump system for protected horticulture. J. of Biosystems Eng. 32(1):30-36 (in Korean). https://doi.org/10.5307/JBE.2007.32.1.030
  4. Kawashima, H., M. Takaichi, M. BaBa, K. Yasui, and Y. Nakano. 2008. Effects of energy saving and the reduction of carbon dioxide emissions with a hybrid-heating system using an air-to-air heat pump for greenhouse heating. Bulletin of the National Institute of Vegetable and Tea Science 7:27-36 (in Japanese).
  5. Kawashima, H., M. Takaichi, and K. Yasuba. 2011. Performance of air-to-air heat pump for tomato greenhouse cooling and reduction of night-cooling load by mulch to control soil heat flux. Bulletin of the National Institute of Vegetable and Tea Science 10:95-104 (in Japanese).
  6. Korea Meteorological Administration (KMA), 2013. Climate data-Annual data extreme value. http://www.kma.go.kr/ weather/climate/extreme_yearly.jsp (in Korean).
  7. Lee, S.H., Y.S. Ryou, J.P. Moon, N.K. Yun, J.K. Kwon, S.J. Lee, and K.W. Kim. 2011. Solar energy storage effectiveness on double layered single span plastic greenhouse. J. of Biosystems Eng. 36(3):217-222 (in Korean). https://doi.org/10.5307/JBE.2011.36.3.217
  8. Marsh, L.S. and S. Singh. 1994. Economics of greenhouse heating with a mine air-assisted heat pump. Trans. of the ASAE 37(6):1959-1963. https://doi.org/10.13031/2013.28288
  9. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2012a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2011. ed. Gwacheon, Korea (in Korean).
  10. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2012b. Cultivation status of floricultural crop in 2011. ed. Gwacheon, Korea (in Korean).
  11. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2012c, Agriculture, forestry and fisheries enterprise enforcement manual. http://manual.agrix.go.kr/home/index.php (in Korean).
  12. Ryou, Y.S., Y.K. Kang, G.C. Kang, Y.J. Kim, and Y. Paek. 2008. Cooling performance of horizontal type geothermal heat pump system for protected hoticulture. Journal of Bio-Environment Control 17(2):90-95 (in Korean).
  13. Suh, W.M., Y.H. Bae, Y.S. Ryou, S.H. Lee, H.T. Kim, Y.J. Kim, and Y.G. Yoon. 2011. Estimation of surplus solar energy in greenhouse (II). Journal of Bio-Environment Control 20(2):83-92 (in Korean).
  14. Tong, Y., T. Kozai, N. Nishioka, and K. Ohyama. 2011. Greenhouse heating using heat pumps with a high coefficient performance (COP). Biosystems Engineering 106:405-411.
  15. Willits, D.H. and Y.R. Gurjer. 2004. Heat pumps for the heating and night-cooling of greenhouse crops: a simulation study. Trans. of the ASAE 47(2):575-584. https://doi.org/10.13031/2013.16038