DOI QR코드

DOI QR Code

Effects of Artificial Light Sources on the Photosynthesis, Growth and Phytochemical Contents of Butterhead Lettuce (Lactuca sativa L.) in the Plant Factory

식물공장에서 인공광원의 종류가 반결구상추의 광합성, 생육 및 기능성물질 함량에 미치는 영향

  • Kim, Dong Eok (Department of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Lee, Hye Jin (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Kang, Dong Hyeon (Department of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Lee, Gong In (Department of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Kim, You Ho (Department of Agricultural Engineering, National Academy of Agricultural Science, RDA)
  • 김동억 (국립농업과학원 농업공학부) ;
  • 이혜진 (국립원예특작과학원 채소과) ;
  • 강동현 (국립농업과학원 농업공학부) ;
  • 이공인 (국립농업과학원 농업공학부) ;
  • 김유호 (국립농업과학원 농업공학부)
  • Received : 2013.09.05
  • Accepted : 2013.11.07
  • Published : 2013.12.31

Abstract

This study aimed to investigate responses of photosynthesis, plant growth, and phytochemical contents to different artificial light sources for 'Seneca RZ' and 'Gaugin RZ' two butterhead lettuce (Lactuca sativa L.). In this study, fluorescent lamps (FL), three colors LEDs (red, blue and white, 5 : 4 : 1; RBW) and metalhalide lamps (MH) were used as artificial lighting sources. Photoperiod, air temperature, relative humidity, EC, and pH in a cultivation system were maintained at 16/8 h, $25/15^{\circ}C$, 60~70%, $1.4{\pm}0.2dS{\cdot}m^{-1}$, and $6.0{\pm}0.5$, respectively. The photosynthetic rate of both two butterhead lettuce were the highest under RBW in middle growth stage. However, in late growth stage, the photosynthetic rate of both two butterhead lettuce were higher under RBW and MH than FL. The light sources showed significant results for plant growth but those effects were different to variety. Fresh and dry weight of 'Gaugin RZ' butterhead lettuce under MH were heavier than other lights in all growth stages. Growth of 'Seneca RZ' butterhead lettuce was maximized highest under MH in middle growth stage and FL in late growth stage. In the leaf tissue of 'Seneca RZ' butterhead lettuce, tipburn symptom occurred under all light sources and in the leaf tissue of 'Gaugin RZ' butterhead lettuce, it occurred under two light sources except for fluorescent lamps in late growth stage. kinds of lamp affect plant growth more than plant quality. Relative growth rate of both two butterhead lettuce was faster in middle growth stage than late stage. Growth of 'Gaugin RZ' was shown by kinds of lamp in middle growth stage and but it was not significantly affected by light sources and variety in late stage. Most of the phytochemical contents of two butterhead lettuce were significantly affected by different light sources. Contents of all vitamins showed higher than other light sources on RBW for both two lettuce, especially ${\beta}$-Carotene content of 'Gaugin RZ' was the highest. Plant growth, photosynthesis, and phytochemical contents were observed significant effects by different light sources for two butterhead lettuce but those effects were highly different between variety and kinds of phytochemicals. Therefore, the selection of optimum light source should be considered by variety and kinds of phytochemicals in the plant factory.

본 연구는 식물공장에서 인공광원에 따른 서로 다른 파장이 'Seneca RZ'와 'Gaugin RZ' 반결구 상추의 광합성 특성, 생육 및 기능성물질 함량에 미치는 영향을 밝히고자 수행하였다. 본 실험에서는 FL(fluorescent lamp), 적색LED와 청색LED 및 백색LED(RBW; red : blue : white = 5 : 4 : 1)와 MH(metalhalide lamp)를 사용하였다. 두 품종 모두 생육 중기에는 RBW에서 광합성속도가 높고 생육 후기에는 'Seneca RZ' 품종은 RBW에서, 'Gaugin RZ' 품종은 MH에서 그 생육이 좋았다. 반결구 상추의 생육은 광원에 따라 생육 차이를 보였으나 각각의 광원의 영향은 품종에 따라 서로 다른 결과를 보였다. 'Seneca RZ' 품종은 생육 중기에는 MH에서, 생육 후기에는 FL에서 생육이 좋았고, 'Caugin RZ' 품종은 생육 중기와 후기 모두 MH에서 생육이 좋은 결과를 보였다. 그러나 수확시기에 'Seneca RZ' 품종은 모든 광원 처리에서, 'Gaugin RZ' 품종은 FL을 제외한 나머지 광원에서 반결구 상추의 잎끝마름증이 발생하는 결과를 보였다. 생육 단계별로 두 품종 모두 생육 중기가 후기에 비해 전반적으로 생육속도가 빠른 결과를 보였다. 'Gaugin RZ' 품종에서 생육 중기에만 광원 종류에 대한 생육속도의 차이를 보였고 생육후기에는 광원의 종류와 품종의 영향을 받지 않는 것으로 나타났다. 인공광원에 따른 두 품종의 반결구 상추의 영양학적 특성은 대부분의 성분에서 광원의 종류에 따른 통계적 유의성이 인정되어 광질이 반결구 상추의 영양학적 품질에 미치는 것으로 판단하였다. 두 품종 모두 RBW에서 4종의 비타민 함량이 높은 결과를 보였으며, 특히 ${\beta}$-Carotene의 함량이 'Gaugin RZ' 품종의 MH에서 가장 높은 결과를 보였다. 이상의 결과에서 인공광원의 종류에 따라 반결구 상추의 생육, 광합성 특성 및 영양학적 품질이 차이가 있으나 품종과 기능성 물질에 따라 각 광원의 영향이 서로 다른 결과를 보여 식물공장 내에서 재배하는 품종과 증진시키고자 하는 기능성 물질에 따라 광원의 선택을 고려해야 할 것으로 판단하였다.

Keywords

References

  1. Cho, Y.R., D.W. Han, and Y.B. Lee. 1998. Effect of artificial light sources on the growth of crisphead lettuce in plant factory. J. Bio-Env. Con. 7(1):35-42.
  2. Collier, G.F. and T.W. Tibbits. 1982. Tipburn of lettuce. Hort. Rev. 4:54-57.
  3. Cosgrove, D. 1981. Rapid suppression of growth by blue light. Plant Physiol. 67(3):584-590. https://doi.org/10.1104/pp.67.3.584
  4. Daniel, J.B. and T.W. Tibbits. 1991. Calcium localization in lettuce leaves with and without tipburn : comparison of controlled environment and field-grown plants. J. Amer. Soc. Hort. Sci. 116(5):870-875.
  5. Gaudreau, L., J. Charbonneau, L.P. Vezina, and A. Gosselin. 1994. Photoperiodic and photosynthetic photon flux influence growth and quality of greenhouse-grown lettuce. Hort-Science 29(11):1285-1289.
  6. Hwang, M.K., C.S. Huh, and Y.J. Seo. 2004. Optic characteristics comparison and analysis of SMD type Y/G/W HB LED. J. Kllee. 18(4):15-21.
  7. Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814.
  8. Kang, S.W. 2008. Plant factory. World science.
  9. Kasajima, S., N. Inoue, R. Mahmud, and M. Kato. 2008. Developmental responses of wheat cv. Norin 61 to fluence rate of green light. Plant Prod. Sci. (11):76-81.
  10. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004a. Green-light supplementation for enhanced lettuce growth under red and blue-light-emitting diodes. HortScience 39(7): 1617-1622.
  11. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004b. Stomatal conductance of lettuce grown under or exposed to different light qualities. Annals of Botany 94(5):691-697. https://doi.org/10.1093/aob/mch192
  12. Kim, M.S. 2011. Effect of LED light quality treatment on the growth and functional optimization of foliage plant. PhD Thesis. Kongju National Univ., Kongju. Korea.
  13. Kim, T.S., S.P. Lee, S.I. Park, J.Y. Lee, S.Y. Lee, and H.Y. Jun. 2011. Physico-chemical properties of Broccoli sprouts cultivated in a plant factory system with different lighting conditions. J. Korean Soc. Food Sci. Nutr. 40(12):1757-1763. https://doi.org/10.3746/jkfn.2011.40.12.1757
  14. Kim, Y.H. 1999. Plant growth and morphogenesis control in transplant production system using light-emitting diodes (LEDs) as artificial light source. J. Biosystems Eng. 24(2): 115-122.
  15. Kim, Y.H., H.J. Kim, J.W. Lee, and J.M. Kim. 2008. Growth of potato plug seedlings as affected by photosynthetic photon flux in a closed transplants production system. J. of Biosystems Eng. 33(2):106-114. https://doi.org/10.5307/JBE.2008.33.2.106
  16. Knapp, A.K. and W.K. Smith. 1990. Stomatal and photosynthetic responses to variable sunlight. Physiologia Plantarum 78(1): 160-165. https://doi.org/10.1111/j.1399-3054.1990.tb08731.x
  17. Lee, J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, Y.C. Um, and S.R. Cheong. 2010. Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J. Bio-Env. Con. 19(4): 351-359.
  18. Lee, Y.B and K.Y. Choi. 2010. Current status of plant factory in developed countries. Bioin WebZine 18.
  19. Li, Q. and C. Kubota, 2009. Effects of supplementary light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67:59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  20. Masahiro, K.M., T.E. Swartz, M.A. Olney, A. Onodera, N. Mochizuki, H. Fukuzawa, E. Asamizu, S. Tabata, H. Kanegae, M. Takano, J.M. Christie, A. Nagatani, and W.R. Briggs. 2002. Photochemical properties of the flavin mono-nucleotide-binding domains of the phototropins from Arabidopsis, rice, and chlamydomonas reinhardtii. Plant Physiology 129(2):762-773. https://doi.org/10.1104/pp.002410
  21. Matsumoto, T., H. Ihoh, Y. Shirai, and Y. Uno. 2010. Effects of light quality on growth and nitrate concentration in lettuce. J. SHITA 22(3):140-147. https://doi.org/10.2525/shita.22.140
  22. Nishimura, T., S.M.A. Zobayed, T. Kozai, and E. Goto. 2006. Effect of light quality of blue and red fluorescent lamps on growth of St. John's wort (Hypericum perforatum L.). J. SHITA 18:225-229. https://doi.org/10.2525/shita.18.225
  23. Pressman, E., R. Shaked, and L. Arcan. 1993. The effect of flower-inducing factors on leaf tipburn formation in Chinese cabbage. J. Plant Physiol. 141:210-214. https://doi.org/10.1016/S0176-1617(11)80762-5
  24. Um, Y.C., S.S. Oh, J.G. Lee, S.Y. Kim, and Y.A. Jang. 2010. The development of container-type plant factory and growth of leafy vegetables as affected by different light sources. J. Bio-Env. Con. 19(4):333-342.
  25. Wu, M.C., C.Y. Hou, C.M. Jiang, Y.T. Wang, C.Y. Wang, H.H. Chen, and H.M. Chang. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry 101:1753-1758. https://doi.org/10.1016/j.foodchem.2006.02.010
  26. Yoon, C.G. 2012. A Study on the LED illumination lamp development and application for plant factory. PhD Thesis. Hongik University, Seoul. Korea. p. 38-48.