Development and Application Trend of Bipolar Membrane for Electrodialysis

전기투석용 바이폴라막의 개발 및 응용동향

  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 김득주 (경상대학교 나노.신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노.신소재융합공학과, 공학연구원)
  • Received : 2013.10.22
  • Accepted : 2013.10.23
  • Published : 2013.10.31

Abstract

Electrodialysis with bipolar membranes (EDBM) has recently gained increasing attention for the recovery and production of acids or bases from the corresponding salt solutions and other high value-added business like food processing and biochemical industry. EDBM possesses economical and environmental benefits and can complex with other process such as ion exchange process, extraction and adsorption. So this paper investigates a brief overview of development for bipolar membrane and EDBM with the practical application.

바이폴라막을 이용한 전기투석공정은 의약산업, 음식산업 등과 같은 고부가 가치산업에 이용되어 왔으며, 용액으로부터 산 또는 염기를 생산하거나 회수할 수 있는 공정으로 많은 각광을 받아왔다. 전기투석공정은 경제적이며 친환경적인 시스템으로 이온교환공정, 추출공정, 흡착공정과 같은 타 공정과의 복합화가 가능하다. 따라서 본고에서는 이온교환막과 이를 이용한 잠재성을 가진 응용분야에 대하여 조사하였다.

Keywords

References

  1. J. H. Song and S. H. Moon, "Principles and Current Technologies of Continuous Electrodeionization", Membrane Journal, 16, 3 (2006).
  2. M. K. Hong, S. D. Han, H. J. Lee, and S. H. Moon, "A Study on Process Performances of Continuous Electrodeionization with a Bipolar Membrane for Water Softening and Electric Regeneration", Membrane Journal, 17, 3 (2007).
  3. C. S. Lee, H. S. Shin, J. H. Jun, S. Y. Jung, and J. W. Rhim, "Recent Development Trends of Cation Exchange Membrane Materials", Membrane Journal, 12, 1 (2002).
  4. C. Huang and T. Xu, "Electrodialysis with bipolar membranes for sustainable development", Environ. Sci. Technol., 40, 17 (2006).
  5. J. Balster, O. Krupenko, I. Punt, D. F. Stamatialis, and M. Wessling, "Preparation and characterisation of monovalent ion selective cation exchange membranes based on sulphonated poly (ether ether ketone)", J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  6. E. N. Komkova, D. F. Stamatialis, H. Strathmann, and M. Wessling, "Anion-exchange membranes containing diamines: preparation and stability in alkaline solution", J. Membr. Sci., 244, 1 (2004).
  7. F. G. Wilhelm, I. G. M. Punt, N. F. A. Van der Vegt, H. Strathmann, and M. Wessling, "Cation permeable membranes from blends of sulfonated poly (ether ether ketone) and poly (ether sulfone)", J. Membr. Sci., 199, 1 (2002). https://doi.org/10.1016/S0376-7388(01)00639-1
  8. T. Xu, R. Fu, W. Yang, and Y. Xue, "Fundamental studies on a novel series of bipolar membranes prepared from poly (2, 6-dimethyl-1, 4-phenylene oxide) (PPO) : II. Effect of functional group type of anion-exchange layers on I-Vcurves of bipolar membranes", J. Membr. Sci., 279, 1 (2006). https://doi.org/10.1016/j.memsci.2005.12.062
  9. T. Xu and W. Yang, "Fundamental studies on a novel series of bipolar membranes prepared from poly (2, 6-dimethyl-1, 4-phenylene oxide) (PPO) : I. Effect of anion exchange layers on I-Vcurves of bipolar membranes", J. Membr. Sci., 238, 1 (2004). https://doi.org/10.1016/j.memsci.2004.02.013
  10. J. H. Hao, C. Chen, L. Li, L. Yu, and W. Jiang, "Preparation of bipolar membranes (I)", J. Appl. Polym. Sci., 80, 10 (2001). https://doi.org/10.1002/1097-4628(20010404)80:1<10::AID-APP1068>3.0.CO;2-Y
  11. J. H. Hao, L. Yu, C. Chen, L. Li, and W. Jiang, "Preparation of bipolar membranes. II", J. Appl. Polym. Sci., 82, 7 (2001).
  12. L. Lebrun, E. Da Silva, G. Pourcelly, and M. Metayer, "Elaboration and characterisation of ionexchange films used in the fabrication of bipolar membranes", J. Membr. Sci., 227, 1 (2003). https://doi.org/10.1016/j.memsci.2003.07.009
  13. M.-S. Kang, A. Tanioka, and S.-H. Moon, "Effects of interface hydrophilicity and metallic compounds on water-splitting efficiency in bipolar membranes", Korean J. Chemi. Eng., 19, 1 (2002). https://doi.org/10.1007/BF02706867
  14. S.-D. Li, C.-C. Wang, and C.-Y. Chen, "Preparation and characterization of a novel bipolar membrane by plasma-induced polymerization", J. Membr. Sci., 318, 1 (2008). https://doi.org/10.1016/j.memsci.2008.02.020
  15. C.-L. Hsueh, Y.-J. Peng, C.-C. Wang, and C.-Y. Chen, "Bipolar membrane prepared by grafting and plasma polymerization", J. Membr. Sci., 219, 1 (2003). https://doi.org/10.1016/S0376-7388(03)00106-6
  16. R.-Q. Fu, T.-W. Xu, Y.-Y. Cheng, W.-H. Yang, and Z.-X. Pan, "Fundamental studies on the intermediate layer of a bipolar membrane: Part III. Effect of starburst dendrimer PAMAM on water dissociation at the interface of a bipolar membrane", J. Membr. Sci., 240, 1 (2004). https://doi.org/10.1016/j.memsci.2004.03.027
  17. X. Huang, D. Huang, X. Ou, F. Ding, and Z. Chen, "Synthesis and properties of side-chain-type ion exchange membrane PEEK-g-StSO3Na for bipolar membranes", Applied Surface Sci., 258, 7 (2012).
  18. K. Venugopal and S. Dharmalingam, "Fundamental studies on a new series of SPSEBS-PVA-QPSEBS bipolar membrane : Membrane preparation and characterization", J. Appl. Polym. Sci., 127, 6 (2013).
  19. R. Fu, T. Xu, G. Wang, W. Yang, and Z. Pan, "PEG catalytic water splitting in the interface of a bipolar membrane", Journal of Colloid and Interface Science, 263, 2 (2003).
  20. A. M. Rajesh, T. Chakrabarty, S. Prakash, and V. K. Shahi, "Effects of metal alkoxides on electro- assisted water dissociation across bipolar membranes", Electrochim. Acta, 66, 1 (2012). https://doi.org/10.1016/j.electacta.2011.12.109
  21. K. Zhang, M. Wang and, C. Gao, "Ion conductive spacers for the energy-saving production of the tartaric acid in bipolar membrane electrodialysis", J. Membr. Sci., 387-388, 1 (2012). https://doi.org/10.1016/j.memsci.2011.06.020
  22. Y. Wei, C. Li, Y. Wang, X. Zhang, Q. Li, and T. Xu, "Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED)", Sep. Purif. Technol., 86, 1 (2012). https://doi.org/10.1016/j.seppur.2011.10.013
  23. Y. Wei, Y. Wang, X. Zhang, and T. Xu, "Comparative study on regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED) and electro-electrodialysis (EED)", Sep. Purif. Technol., 118, 80 (2013).
  24. J. Shen, J. Huang, L. Liu, W. Ye, J. Lin, and B. Van der Bruggen, "The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge", J. Hazardous Materials, 260, 1 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.031
  25. X.-x. Wang, M. Wang, Y.-x. Jia, and T.-t. Yao, "The feasible study on the reclamation of the glyphosate neutralization liquor by bipolar membrane electrodialysis", Desalination, 300, 1 (2012). https://doi.org/10.1016/j.desal.2012.05.023
  26. A. Iizuka, Y. Yamashita, H. Nagasawa, A. Yamasaki, and Y. Yanagisawa, "Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation", Sep. Purif. Technol., 113, 1 (2013). https://doi.org/10.1016/j.seppur.2013.04.008
  27. C. Jiang, Y. Wang, and T. Xu, "An excellent method to produce morpholine by bipolar membrane electrodialysis", Sep. Purif. Technol., 115, 100 (2013). https://doi.org/10.1016/j.seppur.2013.04.053
  28. Y. Wang, N. Zhang, C. Huang, and T. Xu, "Production of monoprotic, diprotic, and triprotic organic acids by using electrodialysis with bipolar membranes: Effect of cell configurations", J. Membr. Sci., 385-386, 1 (2011). https://doi.org/10.1016/j.memsci.2011.06.042
  29. Z. Zhou, J. Zhang, J. Xing, Y. Bai, Y. Liao, and H. Liu, "Membrane-Based Continuous Remover of Trifluoroacetic Acid in Mobile Phase for LC-ESIMS Analysis of Small Molecules and Proteins", Journal of The American Society for Mass Spectrometry, 23, 7 (2012). https://doi.org/10.1007/s13361-011-0279-5
  30. L.-F. Gutierrez, L. Bazinet, S. Hamoudi, and K. Belkacemi, "Production of lactobionic acid by means of a process comprising the catalytic oxidation of lactose and bipolar membrane electrodialysis", Sep. Purif. Technol., 109, 1 (2013). https://doi.org/10.1016/j.seppur.2013.02.019
  31. K. Ghyselbrecht, M. Huygebaert, B. Van der Bruggen, R. Ballet, B. Meesschaert, and L. Pinoy, "Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis", Desalination, 318, 1 (2013). https://doi.org/10.1016/j.desal.2013.03.003
  32. Y. Wei, Y. Wang, X. Zhang, and T. Xu, "Comparative study on the treatment of simulated brominated butyl rubber wastewater by using bipolar membrane electrodialysis (BMED) and conventional electrodialysis (ED)", Sep. Purif. Technol., 110, 1 (2013). https://doi.org/10.1016/j.seppur.2013.03.008
  33. M.-L. Lameloise and R. Lewandowski, "Recovering l-malic acid from a beverage industry waste water: Experimental study of the conversion stage using bipolar membrane electrodialysis", J. Membr. Sci., 403-404, 1 (2012). https://doi.org/10.1016/j.memsci.2012.01.043
  34. J.-X. Zhuang, Q. Chen, S. Wang, W.-M. Zhang, W.-G. Song, L.-J. Wan, K.-S. Ma, and C.-N. Zhang, "Zero discharge process for foil industry waste acid reclamation: Coupling of diffusion dialysis and electrodialysis with bipolar membranes", J. Membr. Sci., 432, 1 (2013). https://doi.org/10.1016/j.memsci.2012.12.028