DOI QR코드

DOI QR Code

Diversity and Biomass of Benthic Diatoms in Hampyeong Bay Tidal Flats

함평만 갯벌 저서규조류의 다양성과 생물량

  • Lee, Hak Young (Department of Biological Science, Chonnam National University)
  • 이학영 (전남대학교 자연과학대학 생물학과)
  • Received : 2013.10.28
  • Accepted : 2013.11.04
  • Published : 2013.12.31

Abstract

The diversity and biomass distribution of benthic diatom flora at tidal flats of Hampyeong Bay were studied from 2006 to 2013 as a part of KLTER Program. A total of 83 species (77 strains in 2006, 65 strains in 2007, 41 strains in 2008, 45 strains in 2009, 54 strains in 2010, 55 strains in 2011, 56 strains in 2012 and 40 strains in 2012) were identified as benthic diatoms of Hampyeong Bay tidal flats. The most dominant species were Paralia sulcata and Cyclotella litoralis. Cyclotella sp., Diploneis sp., Entomoneis alata, Gyrosigma sp., Navicula abunda, Navicula gregaria, Navicula spp. and Nitzschia palea were the other common species which contributed to the high benthic diatom biomass in the Bay. The diversity of benthic diatoms varied according to the sample stations and seasons. The highest diversity was observed in August samples. The range of chlorophyll- a concentration in sediments of tidal flats for 8 years was 21~65 mg $m^{-2}$. The standing crops of benthic diatoms varied according to the studied stations and sampled seasons. The number of taxa and standing crops showed decreasing tendency year after year from all sampled stations. The distributions of standing crops and cell volumes of benthic diatoms showed similar pattern. The taxa and biomass of benthic diatoms showed low correlation coefficients with temperature variables expressed as the following equations $Y=-0.0208X^2+0.5264X+19.529(r^2=0.0269)$ and $Y=-0.9181X^2+27.011X+310.07(r^2=0.0797)$ respectively.

함평만 갯벌에서 2005년부터 2013년까지의 조사를 통해 동정된 저서규조류 중 가장 우점도가 높은 종은 Paralia sulcata였으며 연간 40종에서 77종의 범위로 동정되었다. 조사가 이루어진 8년 동안 출현종의 분석에서 완만하지만 지속적으로 다양도가 감소하는 경향을 나타냈다. 조사시기에 따른 출현종 분포에서는 전 지점에서 5월과 7월에 비교적 다양했고 3월에 종조성이 가장 단순한 것으로 나타났으나, 유의성이 없는 것으로 분석되었다. 표층 퇴적물의 연 평균 엽록소 a 농도는 21~65 mg $m^{-2}$이었으며 2006년 이후 지속적으로 감소하는 경향을 나타내다가 2011년에는 세 지점 모두에서 일시 증가한 후 다시 감소하는 것으로 나타났다. 계절 분포에서는 봄철에 가장 높고 여름에서 가을로 접어드는 시점에 가장 낮은 것으로 나타났다. 단위면적당 출현 개체수도 세 지점 모두에서 점진적으로 감소하는 경향을 나타냈고, 생물량도 감소하는 경향을 보여주었다. 온도에 따른 저서규조류 출현종수 $Y=-0.0208X^2+0.5264X+19.529(r^2=0.0269)$의 식으로 표현되어 최고의 종 다양도는 $15^{\circ}C$에서 23.1종인 것으로 나타났고, 저서규조류 생물량 $Y=-0.9181X^2+27.011X+310.07(r^2=0.0797)$의 식으로 표현되어 최고의 생물량은 $15^{\circ}C$에서 502.38 ${\mu}m^3cm^{-2}$인 것으로 나타났다.

Keywords

References

  1. Agatz M, RM Asmus and B Deventer. 1999. Structural changes in the benthic diatom community along a eutrophication gradient on a tidal flat. Helgoland Mar. Res. 53:92-101. https://doi.org/10.1007/PL00012144
  2. Alsterberg C and K Sundback. 2013. Experimental warming and toxicant exposure can result in antagonistic effects in a shallow-water sediment system. Mar. Ecol. Prog. Ser. 488:89-101. https://doi.org/10.3354/meps10357
  3. Alsterberg C, K Sundback and S Hulth. 2012. Functioning of a shallow-water sediment system during experimental warming and nutrient enrichment. Plos One 7:1-10.
  4. Archambault P and E Bourget. 1999. Influence of shoreline configuration on spatial variation of meroplanktonic larvae, recruitment and diversity of benthic subtidal communities. Exp. Mar. Biol. Ecol. 238:161-184. https://doi.org/10.1016/S0022-0981(98)00146-4
  5. Armitage AR, SM Jensen, JE Yoon and RF Ambrose. 2007. Wintering shorebird assemblages and behavior in restored tidal wetlands in southern California. Restor. Ecol. 15:139-148. https://doi.org/10.1111/j.1526-100X.2006.00198.x
  6. Austena I, TJ Andersenb and K Edelvanga. 1999. The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat, the Danish Wadden Sea. Estuar. Coast. Shelf Sci. 49:99-111.
  7. Boschker HTS, JFC de Brouwer and TE Cappenberg. 1999. The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol. Oceanogr. 44:309-319. https://doi.org/10.4319/lo.1999.44.2.0309
  8. Broitman BR, SA Navarrete, F Smith and SD Gaines. 2001. Geographic variation of southeastern Pacific intertidal communities. Mar. Ecol. Prog. Ser. 224:21-34. https://doi.org/10.3354/meps224021
  9. Cahoon LB. 2006. Upscaling primary production estimates: Regional and global scale estimates of microphytobenthos production. In Kromkamp JC et al. eds., Functioning of Microphytobenthos in Estuaries. Royal Netherlands Academy of Arts and Sciences. 400 p.
  10. Cain ML, WD Bowman and SD Hacker. 2011. Ecology, 2nd ed. Sinauer Associated, Inc., Sunderland, MA. 646p.
  11. Colijn F and KS Dijkema. 1981. Species composition of benthic diatoms and distribution of chlorophyll a on an intertidal flat in the Dutch Wadden Sea. Mar. Ecol. Prog. Ser. 4:9-21. https://doi.org/10.3354/meps004009
  12. Dawes CJ. 2005. Marine Botany, 2nd Ed. John Wiley and Sons Inc, New York.
  13. de Jonge VN and JEE van Beusekom. 1995. Wind- and tideinduced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol. Oceanogr. 40:766-778.
  14. Du GY, M Son, M Yun, S An and IK Chung. 2009. Microphytobenthic biomass composition in intertidal flats of the Nakdong River estuary, Korea. Estuar. Coast. Shelf Sci. 82:663-672. https://doi.org/10.1016/j.ecss.2009.03.004
  15. Easley JT, SN Hymel and CJ Plante. 2005. Temporal patterns of benthic microalgal migration on a semi-protected beach. Estuar. Coast. Shelf Sci. 64:486-496. https://doi.org/10.1016/j.ecss.2005.03.013
  16. Folk RL. 1966. A review of grain-size parameters. Sedimentology 6:73-93. https://doi.org/10.1111/j.1365-3091.1966.tb01572.x
  17. Hao Q, Y Cai, X Ning, C Liu, X Peng and X Tang. 2011. Standing crop and primary production of benthic microalgae on the tidal flats in Yueqing Bay. J. Ocean Univ. China 10:157-164. https://doi.org/10.1007/s11802-011-1750-4
  18. Hasanudin U, T Kunihiro, M Fujita, H-Y Hu, K Fujie and T Suzuki. 2004. The contribution of clams on tidal flat purification capacity. J. Water Environ. Technol. 2:83-90. https://doi.org/10.2965/jwet.2004.83
  19. Hopner T and K Wonneberger. 1985. Examination of the connection between the patchiness of benthic nutrient efflux and epiphytobenthos patchiness on intertidal flats. Netherlands J. Sea Res. 19:277-285. https://doi.org/10.1016/0077-7579(85)90034-1
  20. Igulu MM, I Nagelkerken, G Velde and YD Mgaya. 2013. Mangrove fish production is largely fuelled by external food sources: A stable isotope analysis of fishes at the individual, species, and community levels from across the globe. Ecosystems 16:1336-1352. https://doi.org/10.1007/s10021-013-9687-7
  21. Ko CH, C Park, SJ Yoo, WJ Lee, TW Lee, CE Jang, JK Choi, JS Hong and HT Heo. 1997. Marine Biology. Seoul National Univ. Press, Seoul.
  22. Lee HY. 2002. Comparison of the effects of physico-chemical factors on the zonation and vertical distribution of benthic microalgal communities in the tidal flats of south-west Korea. Kor. J. Environ. Biol. 11:529-535.
  23. Lee, HY and MH Jung. 2011. Distribution of benthic diatoms in tidal flats of Hampyeong Bay, Korea. Kor. J. Environ. Biol. 29:17-22.
  24. Leujak W and RFG Ormond. 2008. Reef walking on Red Sea reef flats-Quantifying impacts and identifying motives. Ocean Coast. Manag. 51:755-762. https://doi.org/10.1016/j.ocecoaman.2008.07.002
  25. Levington JS. 2001. Marine Biology: Function, Biodiversity and Ecology, 2nd Ed. Oxford University Press, Oxford.
  26. Liu W, J Zhang, G Tian, H Xu and X Yan. 2013. Temporal and vertical distribution of microphytobenthos biomass in mangrove sediments of Zhujiang (Pearl River) estuary. Acta Oceanol. Sin. 32:82-88.
  27. Lorenzen CJ. 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12:343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  28. Lucas CH, C Banham and PM Holligan. 2000. Benthic-pelagic exchange of microalgae at a tidal flat. 1. Pigment analysis. Mar. Ecol. Prog. Ser. 196:59-73. https://doi.org/10.3354/meps196059
  29. Lucas CH, C Banham and PM Holligan. 2001. Benthic-pelagic exchange of microalgae at a tidal flat. 2. Taxonomic analysis. Mar. Ecol. Prog. Ser. 212:39-52. https://doi.org/10.3354/meps212039
  30. Ministry of Environment. 2004. Reports on Long-term Ecological Research.
  31. Ministry of Oceans and Fisheries. 1999. Researches on ecology and sustainable usage of tidal flats-Hampyeong Bay.
  32. Montani S, P Magni and N Abe. 2003. Seasonal and interannual patterns of intertidal microphytobenthos in combination with laboratory and areal production estimates. Mar. Ecol. Prog. Ser. 249:79-91. https://doi.org/10.3354/meps249079
  33. Mulamoottil G, BG Warner and EA McBean. 1996. Wetlands-Environmental gradients, boundaries, and buffers. Lewis Publishers, London.
  34. Park YA. 1998. Science of the Ocean-Indroductory Oceanography. Seoul National Univ. Press, Seoul.
  35. Petchey OL, PT McPhearson, TM Casey and PJ Morin. 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402:69-72. https://doi.org/10.1038/47023
  36. Rizzo W. 1990. Nutrient exchanges between the water column and a subtidal benthic microalgal community. Estuaries 13:219-226.
  37. Scholza B and G Liebezeita. 2012. Growth responses of 25 benthic marine Wadden Sea diatoms isolated from the Solthorn tidal flat (southern North Sea) in relation to varying culture conditions. Diatom Res. 27:65-73. https://doi.org/10.1080/0269249X.2012.660875
  38. Sze P. 1998. A Biology of the Algae. WCB McGraw-Hill, Boston.
  39. Teal JM. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:473-490. https://doi.org/10.2307/1933375
  40. Wetzel RG and GE Likens. 2000. Limnological Analysis. Springer-Verlag. New York.