DOI QR코드

DOI QR Code

Impact of Largemouth Bass (Micropterus salmoides) on the Population of Korean Native Fish, Crucian Carp (Carassius auratus)

배스가 국내 호소에 서식하는 붕어 개체군에 미치는 영향

  • Lee, Jin-Woong (Department of Biology Education, Kongju National University) ;
  • Kim, Jeong-Hui (Department of Biology Education, Kongju National University) ;
  • Park, Sang-Hyeon (Department of Biology Education, Kongju National University) ;
  • Choi, Kee-Ryong (School of Biological Sciences, University of Ulsan) ;
  • Lee, Hae-Jin (Nakdong River Environmental Research Center, National Institute of Environmental Research) ;
  • Yoon, Ju-Duk (Biological Resource Center, Kongju National University) ;
  • Jang, Min-Ho (Department of Biology Education, Kongju National University)
  • 이진웅 (공주대학교 생물교육과) ;
  • 김정희 (공주대학교 생물교육과) ;
  • 박상현 (공주대학교 생물교육과) ;
  • 최기룡 (울산대학교 생명과학부) ;
  • 이혜진 (낙동강 물환경연구소) ;
  • 윤주덕 (공주대학교 생물자원센타) ;
  • 장민호 (공주대학교 생물교육과)
  • Received : 2013.10.30
  • Accepted : 2013.11.20
  • Published : 2013.12.31

Abstract

Exotic species in aquatic ecosystem generate various problems domestically as well as globally. Largemouth bass (Micropterus salmoides) which is a well-known exotic species globally, acts as a substantial disturbance factor on the native fish communities in Korea due to the high predation pressure and hence designated as a ecologically harmful species by Ministry of Environment. In this study, we investigated the impact of largemouth bass on Korean native fish population, crucian carp (Carassius auratus), to identify responses of the prey fish. Two fish species were collected at seven reservoirs distributed at the Nakdong River catchment area, and changes in length-frequency and length-weight relationship (LWR) were analysed depending on existence of large-mouth bass. At bass absent sites, ratio of under age 1 year individuals were small, and over age two years were dominant. Conversely, normal length-frequency distribution pattern was identified at bass absent sites. The LWR of crucian carp (fish smaller than total length of 160 mm were only considered as it is frequently consumed by bass predation) was different depending upon bass existence. The value of parameter b at bass absent reservoirs was 2.909, which was smaller than that of bass present reservoirs, 3.100. Our results imply that crucian carp at bass present reservoirs presented a different strategy to survive from predation by bass, through relatively rapid growth. We propose that other native species might have similar growth strategies like crucian carp.

수생태계에서 외래종의 문제는 국내뿐만 아니라 국제적으로도 많은 문제를 야기하고 있다. 배스의 경우 높은 포식압으로 수생태계 내에서 상당한 교란 요인으로 작용하고 있으며, 환경부에서 위해종으로 선정되어 관리 받고 있다. 본 연구에서는 위해종인 배스가 국내토착종인 붕어의 개체군에 미치는 영향을 파악하였다. 조사는 총 7지역의 저수지에서 시행하였으며, 배스의 유무에 따라 붕어의 길이분포와 길이무게 상관관계를 분석하였다. 연구결과 배스가 서식하는 지역의 붕어 개체군은 1년생 이하 치어의 비율이 전반적으로 높지 않았고 오히려 2년생 이상의 큰 개체의 비율이 높게 나타났다. 반면 배스가 서식하지 않는 호소의 붕어 개체군은 1년생 이하의 비율이 높게 나타나 일반적인 성장 패턴을 보였다. 또한 배스의 직접적인 먹이가 되는 1년생 이하의(160 mm 이하) 붕어개체를 대상으로 길이-무게 상관관계 분석 결과 배스가 서식하지 않는 호소에서 매개변수 b값이 2.909, 배스가 서식하는 호소에서는 매개변수 b값이 3.100로 나타나 배스가 존재하는 환경에서 붕어의 무게가 상대적으로 더 빠르게 증가하는 것을 확인할 수 있었다. 따라서 배스의 포식에 직접적으로 영향을 받는 호소내 개체군이 생존을 위해 상대적으로 빠른 성장 전략을 사용한 것으로 사료되었으며, 이와 같은 현상은 붕어뿐만 아니라 국내 토착하는 다른종에서도 유사하게 확인될 것으로 판단된다.

Keywords

References

  1. Azuma M. 1992. Ecological release in feeding behavior, the case of Bluegills in Japan. Hydrobiologia 243:269-276.
  2. Byeon HK and SR Jeon. 1997. Feeding habit of Bluegill, Lepomis macrochirus introduced in Korea. Korean J. Environ. Biol. 15:165-174.
  3. Byeon HK, HB Song, SR Jeon and YM Son. 1997. Feeding habit of Bluegill, Lepomis macrochirus, introduced at lake Paldang. Korean J. Limnol. 30:75-81.
  4. Han M, M Fukushima and T Fukushima. 2008. Species richness of exotic and endangered fishes in Japan's reservoirs. Environ. Biol. Fish. 83:409-416. https://doi.org/10.1007/s10641-008-9362-6
  5. Hoyle JA and A Keast. 1987. The effect of prey morphology and size on handling time in a piscivore, the Largemouth bass (Micropterus salmoides). Can. J. Zool. 65:1972-1977. https://doi.org/10.1139/z87-300
  6. Jang MH, GJ Joo and MC Lucas. 2006. Diet of introduced Largemouth bass in Korean rivers and potential interactions with native fishes. Ecol. Freshwat. Fish. 15:315-320. https://doi.org/10.1111/j.1600-0633.2006.00161.x
  7. Kim DH, SO Hwang, HJ Yang, SR Jeon, SS Choi, IS Kim and CG Choi. 1996. Studies on the distribution and effect of the exotic fishes in dam reservoir. Korea Water Resources Corporation. 258 pp.
  8. Kim IS and JY Park. 2002. Freshwater Fish of Korea. Kyohak Publishing, Seoul.
  9. Ko MH, JY Park and YJ Lee. 2008. Feeding habits of an introduced Largemouth bass, Micropterus salmoides (Perciformes; Centrachidae) and its influence on ichthyofauna in the lake Okjeong, Korea. Korean J. Ichthyol. 20:36-44.
  10. Lecren ED. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the Perch (Perca fluviatilis). J. Anim. Ecol. 20:201-219. https://doi.org/10.2307/1540
  11. Lee WO, CB Gang, HU Park, MC Han, HK Byeon, JG Myeong, CH Noh, GP Hong, HB Song, BS Chae, GH Han, JR Ko and YP Hong. 2002. The Present condition of exotic fishes introduced to the interior of a country. Symposium of Korean J. Ichthyol. 128 pp.
  12. Lee WO, GH Kim, GU Hong and MS Byeon. 2005. Feeding habits of Bass (Micropterus salmoides) in Paldang and Togyoji. Autumn academic Presentation of Korean J. Ichthyol. pp.123-125.
  13. Lee WO, H Yang, SW Yoon and JY Park. 2009. Study on the feeding habits of Micropferus salmoides in lake Okjeong and lake Yongdam, Korea. Korean J. Ichthyol. 21:200-207.
  14. Lima SL and LM Dill. 1990. Behavioral decisions made under the risk of predation, a review and prospectus. Can. J. Zool. 68:619-640. https://doi.org/10.1139/z90-092
  15. Mcdougall DM and M Eagleburger. 1992. Ruffe in the great lakes, a threat to north American fisheries. Great Lakes Fishery Commission, Ottawa.
  16. Mcphee RJ and WM Spaulding. 1989. The report of the evaluation of the great lakes fishery commission by bi-national evaluation team, An Analysis of the Economic Contribution of the Great Lakes Sea Lamprey Program. Great Lakes Fishery Commission, Ottawa.
  17. Ministry of Environment. 2006. Construction of monitoring system and management plan for ecologically harmful species. Ministry of Environment, Seoul.
  18. National Institute of Environmental Research. 1996. The ecosystem influence investigation by the exotic species. National Institute of Environmental Research, Seoul.
  19. Park YH, SD Lee and JW Kim. 1998. The environmental policy propelled direction about the exotic species. Korea Environment Institute, Seoul.
  20. Pettersson LB, K Andersson and K Nilsson. 2001. The diel activity of crucian carp, Carassius carassius in relation to chemical cues from predators. Environ. Biol. Fish. 61:341-345. https://doi.org/10.1023/A:1011073518350
  21. Pettersson LB, PA Nilsson and C Bronmark. 2000. Predator recognition and defence strategies in crucian carp, Carassius carassius. Oikos 88:200-212. https://doi.org/10.1034/j.1600-0706.2000.880122.x
  22. Poleo A, SA Osxnevad, K Osstbye, E Heibo, RA Andersen and LA Vollestad. 1995. Body morphology of crucian carp, Carassius carassius in lakes with or without piscivorous fish. Ecography 18:225-229. https://doi.org/10.1111/j.1600-0587.1995.tb00125.x
  23. Smith RJF. 1997. Avoiding and deterring predators. pp.163-190. In Behavioural Ecology of Teleost Fishes. Oxford Univ. Press. Oxford.
  24. Son YM and HK Byeon. 2001. Feeding habits of main carnivorous fish (Erythroculter erythropterus, Opsariichthys uncirostris and Micropterus salmoides) at lake Paldang. Seowon Univ. Basicscience Laboratory. 15:61-78.
  25. Song HB, MS Byeon, DW Kang, CY Jang, JS Moon and HK Park. 2012. Population structure of Bluegill, Lepomis macrochirus in lakes of the Han river system, Korea. Korean J. Ichthyol. 24:278-286.
  26. Specziar A. 2011. Size-dependent prey selection in piscivorous pikeperch Sander lucioperca and Volga pikeperch Sander volgensis shaped by bimodal prey size distribution. J. Fish Biol. 79:1895-1917. https://doi.org/10.1111/j.1095-8649.2011.03127.x
  27. Stabell OB and M Sanlwin. 1997. Predator-induced phenotypic changes in crucian carp are caused by chemical signals from conspecifics. Environ. Biol. Fish. 49:139-144.
  28. Tollrian R and CD Harvell. 1999. The evolution of inducible defenses, curent ideas. pp.306-322. In The Ecology and Evolution of Inducible Defenses. Princeton Univ. Press, Newjersey.
  29. Warren PH and JH Lawton. 1987. Invertebrate predator-prey body size relationships, an explanation for upper triangular food webs and patterns in food web structure. Oecologia 74:231-235. https://doi.org/10.1007/BF00379364