DOI QR코드

DOI QR Code

Anti-inflammatory effects of Sparassis crispa extracts

꽃송이버섯 추출물의 항염활성 효과

  • Choi, Woo-Suk (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Shin, Pyung-Gyun (Mushroom Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Bok, Yoo Young (Mushroom Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Jun, Noh Hyung (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
  • 최우석 (부경대학교 자연과학대학 미생물학과) ;
  • 신평균 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 유영복 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 노형준 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 김군도 (부경대학교 자연과학대학 미생물학과)
  • Published : 2013.03.31

Abstract

Sparassis crispa is a medicinal mushroom, which has been reported to have anti-cancer effect. In this study, we designed to investigate the effects of Sparassis crispa extracts on the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells. The pre-treatment of the extracts prior to add LPS in RAW264.7 cells suppressed NO production and iNOS expression at protein and mRNA levels. The phosphorylation of $I{\kappa}B{\alpha}$ was inhibited by the extracts, which was induced through suppressing the activation of $NF-{\kappa}B$. Sparassis crispa extracts showed the effect on the down-regulation of STAT-1 activation in a dose-dependent manner. In LPS-stimulated RAW264.7 cells, $NF-{\kappa}B$ was translocated into the nucleus, while the treatment of Sparassis crispa extracts induced to sequestered $NF-{\kappa}B$ in the cytosol. These experimental results determined that Sparassis crispa extracts play a inhibitory role in inflammatory reactions via regulating NO production, which suggests potential as a component of inflammatory drugs.

꽃송이버섯 추출물은 염증반응 시 유도되는 NO 생성을 저해하는 활성이 있는 것으로 나타났으며, 200 ${\mu}g/ml$의 꽃송이버섯 추출물을 처리하였을 때 NO 저해능이 최대 효과를 보였고 RAW264.7 cell에서는 대조군과 유사한 수준으로 NO 생성을 억제하였다. 이러한 NO 생성의 저해는 iNOS의 발현이 감소한 것에 의한 결과임을 단백질과 mRNA의 발현량 변화를 통하여 확인하였으며, mRNA 발현 변화는 iNOS 유전자의 전사를 담당하는 전사인자인 $NF-{\kappa}B$와 STAT-1의 활성감소에 의한 결과임을 western blot을 통하여 확인하였다. 특히, $NF-{\kappa}B$의 활성감소는 $I{\kappa}B{\alpha}$의 활성증가에 의한 $NF-{\kappa}B$의 억제능 향상에 의한 것임을 확인하였고, 활성억제된 $NF-{\kappa}B$가 핵 내부로의 이동이 저해되면서 iNOS 유전자 발현에 영향을 미친 것임을 확인하였다. 그러므로, 꽃송이버섯 추출물은 NO 저해능을 이용한 항염증소재로서 염증성질환의 완하에 도움이 될 것으로 사료된다.

Keywords

References

  1. Aktan, F. 2004. iNOS-mediated nitric oxide production and its regulation, Life Sciences 75: 639-653. https://doi.org/10.1016/j.lfs.2003.10.042
  2. Andrej, J., Shailesh, D., Qing-li, W., James, S. and Daniel, S. 2011. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-${\kappa}$B and AP-1 signaling, Nutr. J. 10: 52. https://doi.org/10.1186/1475-2891-10-52
  3. Barros, L., Baptista, P., Estevinho, L. M. and Ferreira, I.C.F.R. 2007. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms, J. Agr. Food Chem. 55: 8766-8771. https://doi.org/10.1021/jf071435+
  4. Cho, S. Y., Park, S. J., Kwon, M. J., Jeong, T. S.,Bok, S. H., Choi, W. Y., Jeong, W. I., Ryu, S. Y.. Do, S. H. and Lee, C.S. 2003. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-${\kappa}$B pathway in lipopolysaccharide-stimulated macrophage, Mol. Cell. Biochem. 243: 153-160. https://doi.org/10.1023/A:1021624520740
  5. Cirino, G., Distrutti, E. and Wallace, J. L. Nitric oxide and inflammation, Inflamm. Allergy. (2006) 115-119.
  6. Farlik, M., Reutterer, B., Schindler, C., Greten, F., Vogl, C., Muller, M. and Decker, T. 2010. Conventional initiation complex assembly by STAT and NF-${\kappa}$B transcription factors regulates nitric oxide synthase expression, Immunity 33: 25-34. https://doi.org/10.1016/j.immuni.2010.07.001
  7. Gomez, P. F., Pillinger, M. H., Attur, M., Marjanovic, N., Dave, M., Park, J., Bingham III, C. O., Al-Mussawir, H. and Abramson, S. B. 2005. Resolution of inflammation: prostaglandin E2 dissociates nuclear trafficking of individual NF-${\kappa}$ B subunits (p65, p50) in stimulated rheumatoid synovial fibroblasts, J. Immunol. 175: 6924-6930. https://doi.org/10.4049/jimmunol.175.10.6924
  8. Guillamon, E., Garcia-Lafuente, A., Lozano, M., D'Arrigo, M., Rostagno, M. A., Villares, A. and Martinez, J. A. 2010. Edible mushrooms: role in the prevention of cardiovascular diseases, Fitoterapia 81: 715-723. https://doi.org/10.1016/j.fitote.2010.06.005
  9. Kim, G. Y., Han, M. G., Song, Y. S., Shin, B. C., Shin, Y. I., Lee, H. J., Moon, D. O., Lee, C. M., Kwak, J. Y., Bae, Y. S., Lee, J. D. and Park, Y. M. 2004. Proteoglycan Isolated from Phellinus linteus induces toll-like receptors 2- and 4-mediated maturation of murine dendritic cells via activation of ERK, p38, and NF-${\kappa}$B, Biol. Pharm. Bull. 27: 1656-1662. https://doi.org/10.1248/bpb.27.1656
  10. Kim, H. G., Yoon, D. H., Lee, W. H., Han, S. K., Shrestha, B., Kim, C. H., Lim, M. H., Chang, W., Lim, S. and Choi, S. 2007. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-${\kappa}$B and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage, J. Ethnopharmacol. 114: 307-315 https://doi.org/10.1016/j.jep.2007.08.011
  11. Kim, H. S., Kim, J. Y., Ryu, H. S., Park, H. G., Kim, Y. O., Kang, J. S., Kim, H. M., Hong, J. T., Kim, Y. and Han, S. B. 2010. Induction of dendritic cell maturation by ${\beta}$-glucan isolated from Sparassis crispa, Int. Immunopharmacol. 10: 1284-1294. https://doi.org/10.1016/j.intimp.2010.07.012
  12. Kim, M. Y., Seguin, P., Ahn, J. K., Kim, J. J., Chun, S. C., Kim, E. H., Seo, S. H., Kang, E. Y., Kim, S. L. and Park, Y. J. 2008. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea, J. Agr. Food Chem. 56: 7265-7270. https://doi.org/10.1021/jf8008553
  13. Kwon, A., Qiu, Z., Hashimoto, M., Yamamoto, K. and Kimura, T. 2009. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats, Am. J. Surg. 197: 503-509. https://doi.org/10.1016/j.amjsurg.2007.11.021
  14. Laskin, D. L. and Pendino, K. J. 1995. Macrophages and inflammatory mediators in tissue injury, Annu. Rev. Pharmacol. 35: 655-677. https://doi.org/10.1146/annurev.pa.35.040195.003255
  15. Liang,Y. C., Huang, Y. T., Tsai, S. H., Lin-Shiau, S. Y., Chen, C. F. and Lin, J. K. 1999. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages, Carcinogenesis 20: 1945-1952 https://doi.org/10.1093/carcin/20.10.1945
  16. Moradali, M. F., Mostafavi, H., Ghods, S. and Hedjaroude, G. A. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi), Int. Immunopharmacol. 7: 701-724. https://doi.org/10.1016/j.intimp.2007.01.008
  17. Raja, B. 2011. Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in L-NAME induced hypertensive rats, Eur. J. Pharmacol. 671: 87-94. https://doi.org/10.1016/j.ejphar.2011.08.052
  18. Stefano, D. D., Maiuri, M.C., Iovine, B., Ialenti, A., Bevilacqua, M. A. and Carnuccio, R. 2006. The role of NF-${\kappa}$B, IRF-1, and STAT-1${\alpha}$ transcription factors in the iNOS gene induction by gliadin and IFN-${\gamma}$ in RAW 264.7 macrophages, J. Mol. Med. 84: 65-74. https://doi.org/10.1007/s00109-005-0713-x
  19. Walley, K. R., McDONALD, T. E., Higashimoto, Y. and Hayashi, S. 1999. Modulation of proinflammatory cytokines by nitric oxide in murine acute lung injury, Am. J. Resp. Crit. Care. 160: 698-704. https://doi.org/10.1164/ajrccm.160.2.9809081
  20. Xie, Q., Kashiwabara, Y. and Nathan, C. 1994. Role of transcription factor NF-${\kappa}$B/Rel in induction of nitric oxide synthase, J. Biol. Chem. 269: 4705-4708.
  21. Yamamoto, K., Kimura, T., Sugitachi, A. and Matsuura, N. 2009. Anti-angiogenic and anti-metastatic effects of. ${\beta}$.-1, 3-Dglucan purified from hanabiratake, Sparassis crispa, Biol. Pharma. Bull, 32: 259-263. https://doi.org/10.1248/bpb.32.259
  22. Yoon, W. J., Ham, Y. M., Kim, S. S., Yoo, B. S., Moon, J. Y., Baik, J. S., Lee, N. H. and Hyun, C. G. 2009. Suppression of pro-inflammatory cytokines, iNOS, and COX-2 expression by brown algae Sargassum micracanthum in RAW 264.7 macrophages, EurAsia J. BioSci. 3: 130-143.

Cited by

  1. Effect of Sparassis crispa Extracts on Immune Cell Activation and Tumor Growth Inhibition vol.23, pp.8, 2013, https://doi.org/10.5352/JLS.2013.23.8.984
  2. Effect of Original Kyungokgo & Iksuyongjingo plus Sparassis crispa on Antioxidant, Immunity Improvement and Sensory Evaluation vol.31, pp.4, 2016, https://doi.org/10.6116/kjh.2016.31.4.43.
  3. Biological Activities of Wild Sparassis crispa Extracts vol.43, pp.1, 2015, https://doi.org/10.4489/KJM.2015.43.1.40
  4. Component analysis and immuno-stimulating activity of Sparassis crispa stipe vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.515
  5. Antioxidant and Immunological Activities of Sparassis crispa Fermented with Meyerozyma guilliermondii FM vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1398
  6. Effects of Sparassis crispa in Medical Therapeutics: A Systematic Review and Meta-Analysis of Randomized Controlled Trials vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051487