DOI QR코드

DOI QR Code

Comparison of Backgroud Noise Characteristics between Surface and Borehole Station of Hwacheon

화천 지진관측소 지표와 시추공의 배경잡음 특성 비교

  • Received : 2013.04.08
  • Accepted : 2013.08.30
  • Published : 2013.11.30

Abstract

To look into site characteristics of the Hwacheon borehole seismic station, we analyzed property of earthquake and microtremor recorded on surface and borehole seismometers. Acoording to analysis result of microtremor, the surface-to-borehole energy ratio was approximately 15 times greater during the daytime than during the nighttime, and the surface-to-borehole ratios of spectral amplitudes as frequency increases. For earthquake data, amplitude spectra and dominant frequency were computed using surface and borehole data. As a result, small earthquakes with short distance recorded on surface seismometer peaked at 8 Hz, 46 Hz. This result corresponds to resonance frequencies (7.4 Hz, 46 Hz) calculated by H/V spectral ratio. We confirmed amplification effect by site characteristics of overburden. Background noise level was approximately 20,000 times smaller at borehole seismic station than surface seismic station. These results provide strong evidence for the superior recording of earthquakes using borehole seismometers instead of surface seismometers.

화천 시추공 지진관측소의 부지특성을 살펴보기 위해 지표와 시추공 자료에 기록된 배경잡음과 지진신호의 특성을 분석하였다. 배경잡음을 분석한 결과, 비교적 잡음유입이 적은 밤 시간대에 비하여 낮 시간대에서 지표/시추공 잡음에너지 비가 약 15배 높게 나타났으며, 저주파에서 고주파로 갈수록 지표/시추공 스펙트럼 비가 크게 나타났다. 지진신호에 대해서는 P파와 SH파의 우세주파수 양상을 비교하였는데, 진앙거리가 가깝고, 규모가 작은 국내지진은 지표자료에서 8 Hz와 46 Hz에서 우세주파수를 보이며 시추공 자료와 다른 값을 나타내었다. 이는 수평/수직 스펙트럼 비 분석으로 구한 퇴적층의 공명주파수(7.4 Hz, 46 Hz)와 일치하며 상부 퇴적층에 영향을 받아 증폭현상이 나타나고 있음을 시사한다. 이번 연구를 통해 지표 관측소에 비하여 시추공 관측소에서는 배경잡음이 최대 20,000배 이상 감소되고, 상부퇴적층에 의한 증폭현상이 나타나지 않아 양질의 자료를 획득하여 지진관측능력이 향상될 수 있음을 알 수 있었다.

Keywords

References

  1. Abecrombie, R. E., 1997, Near-Surface Attenuation and Site Effects from Comparison of Surface and Deep Borehole Recordings, Bull. Seismol. Soc. Am., 87, 731-744.
  2. Beresnev, I. A., and Wen, K. L., 1996, The Accuracy of Soil Response Estimates using Soil-to-Rock Spectral Ratio, Bull. Seismol. Soc. Am., 86, 519-523.
  3. Cho, B.-J., Sheen, D.-H., Jo, B.-G., Park, S.-C., and Hwang, E.-H., The Site Effect of the Broadband Seismic Stations in Korea, Journal of the Geological Society of Korea, 45(2), 127-141.
  4. Cocco, M., Ardizzoni, F., Azzara, R. M., Dall'Olio, L., Delladio, A., Di Bona, M., Malagnini, L., Margheriti, L., and Nardi, A., 2001, Broadband waveforms and site effects at a borehole seismometer in the Po alluvial basin (Italy), Annals of Geophysics, 44, 137-154.
  5. Kim, S. K., Nam, S.-T., and Ryoo, Y., 2004, Characteristics of the background noise of seismograph station in Korea, Journal of the Geological Society of Korea, 40, 515-536.
  6. Kim, S. Y., and Kim, S. K., 2009, Characteristics of Site Amplification of the Broad-band Seismic Stations in Korea, Journal of Korean Earth Science Society, 30, 810-823. https://doi.org/10.5467/JKESS.2009.30.7.810
  7. Lay, T., and Wallace, T. C., 1995, Modern Global Seismology, Academic press, 203.
  8. Liu, H. P., Warrick, R. E., Westerlund, R. E., and Fletcher, R. E. J. B., 1991, A Three Component Borehole Seismometer for Earthquake Seismology, Bull. Seismol. Soc. Am., 81, 2458-2485.
  9. McNamara, D. E., and R. P. Buland, 2004, A mbient Noise Levels in the Continental United States, Bull. Seismol. Soc. Am., 94, 1517-1527. https://doi.org/10.1785/012003001
  10. Nakamura, Y., 1989, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Quarterly Report of Railway Technical Research Institute, Quarterly Reports, 30, 25-30.
  11. Ringdal, F., and Bungum, H., 1977, Noise level variation at NORSAR and its effect on detectability, Bull. Seismol. Soc. Am., 67, 479-492.
  12. Rodriguez, V. H. S., and Midorikawa, S., 2003, Comparison of spectral ratio techniques for estimation of site effects using microtremor data and earthquake motions recorded at the surface and in boreholes, Earthquake Engng Struct. Dyn., 32, 1691-1714. https://doi.org/10.1002/eqe.296
  13. Satoh, T., 2006, Inversion of QS of Deep Sediments from Surface-to-Borehole Spectral Ratios Considering Obliquely Incident SH and SV Waves, Bull. Seismol. Soc. Am., 96, 943-956. https://doi.org/10.1785/0120040179
  14. Sheen, D.-H. and Shin, J. S., 2010, Earthquake detection thresholds of broadband seismic networks in South Korea considering background seismic noise levels, Journal of the Geological Society of Korea, 46, 31-38.
  15. Steidl, J. H., Tumarkin, A. G., and Archuleta, R. J., 1996, What Is a Reference Site?, Bull. Seismol. Soc. Am., 86, 1733-1748.
  16. Tsuboi, C., 1954, Determination of the Gutenberg-Richter's magnitude of earthquakes occurring in and near Japan, Zisin, 7, 185-193. https://doi.org/10.4294/zisin1948.7.3_185
  17. Utsu, T. et al., 2001, Encyclopedia of earthquakes, Asakura shoten, 284.
  18. Wee, S. H., and Kim, S. K., 2008, The Site Effect of the Broadband Seismic Stations in Korea, Journal of Economic and Environmental Geology, 41, 225-242.

Cited by

  1. Characteristics of Low-frequency Ambient Seismic Noise in South Korea vol.19, pp.2, 2016, https://doi.org/10.7582/GGE.2016.19.2.067