DOI QR코드

DOI QR Code

Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarcane bagasse

  • Adinaveen, T. (Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College) ;
  • Kennedy, L. John (Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus) ;
  • Vijaya, J. Judith (Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College) ;
  • Sekaran, G. (Environmental Technology Division, Central Leather Research Institute)
  • Published : 2013.09.25

Abstract

Activated carbon composite was prepared from sugarcane bagasse. The X-ray diffraction revealed the evolution of crystallites of carbon and silica during activation at higher temperature. FTIR spectrum shows the presence of functional groups and silica in the carbon composite. The morphology of the carbon sample was determined by SEM. The surface area, pore volume and pore size distribution of carbon composites were measured. The dc conductivity was determined and conductivity at room temperature was found to increase from $10.22{\times}10^{-3}$ to $25.131{\times}10^{-3}Scm^{-1}$. The samples show good electrochemical property and the specific capacitance in the range of 92-340 $Fg^{-1}$.

Keywords

References

  1. Y. Guo, D.A. Rockstraw, Carbon 44 (2006) 1464. https://doi.org/10.1016/j.carbon.2005.12.002
  2. W.T. Tsai, C.Y. Chang, S.L. Lee, Carbon 35 (1997) 1198. https://doi.org/10.1016/S0008-6223(97)84654-4
  3. Y. Guo, D.A. Rockstraw, Microporous and Mesoporous Materials 100 (2007) 12. https://doi.org/10.1016/j.micromeso.2006.10.006
  4. J. Hayashi, H. Toshihide, T. Isao, M. Katsuhiko, N.A. Fard, Carbon 40 (2002) 2381. https://doi.org/10.1016/S0008-6223(02)00118-5
  5. W.C. Lim, C. Srinivasakannan, N. Balasubramanian, Journal of Analytical and Applied Pyrolysis 88 (2010) 181. https://doi.org/10.1016/j.jaap.2010.04.004
  6. G.G. Stavropoulos, A.A. Zabaniotou, Microporous and Mesoporous Materials 82 (2005) 79. https://doi.org/10.1016/j.micromeso.2005.03.009
  7. J.A. Pessoa, I.M. de Manchilha, S. Sato, Journal of Industrial Microbiology and Biotechnology 18 (1997) 360. https://doi.org/10.1038/sj.jim.2900403
  8. Z. Hu, M.P. Srinivasan, N. Yaming, Carbon 39 (2001) 877. https://doi.org/10.1016/S0008-6223(00)00198-6
  9. A. Yuan, Q. Zhang, Electrochemistry Communications 8 (2006) 1173. https://doi.org/10.1016/j.elecom.2006.05.018
  10. H. Oda, Y. Nakagawa, Carbon 41 (2003) 1037. https://doi.org/10.1016/S0008-6223(03)00013-7
  11. S. Biloe, V. Goetz, A. Guillot, Carbon 40 (2002) 1295. https://doi.org/10.1016/S0008-6223(01)00287-1
  12. T.E. Rufford, D.H. Jurcakova, K. Khosla, Z. Zhu, G.Q. Lu, Journal of Power Sources 195 (2010) 912. https://doi.org/10.1016/j.jpowsour.2009.08.048
  13. C.H. Huang, R.A. Doong, Microporous and Mesoporous Materials 147 (2012) 47. https://doi.org/10.1016/j.micromeso.2011.05.027
  14. S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, Academic Press, London, 1982.
  15. A.C. Pastor, R. Rodriguez, H. Marsh, M.A. Martinez, Carbon 37 (1999) 1275. https://doi.org/10.1016/S0008-6223(98)00324-8
  16. N. Yalcin, V. Sevnic, Ceramics International 27 (2001) 219. https://doi.org/10.1016/S0272-8842(00)00068-7
  17. M.S. Solum, R.J. Pugmine, M. Jagyoten, F. Derbyshire, Carbon 33 (1995) 1247. https://doi.org/10.1016/0008-6223(95)00067-N
  18. L.J. Kennedy, J.J. Vijaya, G. Sekaran, Industrial and Engineering Chemistry Research 43 (2004) 1832. https://doi.org/10.1021/ie034093f
  19. S. Bourbigot, M. Le Bras, R. Delobel, Carbon 33 (1995) 283. https://doi.org/10.1016/0008-6223(94)00131-I
  20. T.H. Liou, Materials Science and Engineering A 364 (2004) 313. https://doi.org/10.1016/j.msea.2003.08.045
  21. O. Gyu Hwan, C.R. Park, Fuel 81 (2002) 327. https://doi.org/10.1016/S0016-2361(01)00171-5
  22. W.T. Tsai, C.Y. Chang, M.C. Lin, S.F. Chien, H.F. Sun, M.F. Hsieh, Chemosphere 45 (2001) 51. https://doi.org/10.1016/S0045-6535(01)00016-9
  23. M. Molina-Sabio, F. Rodriguez-Reinoso, F. Caturla, M.J. Selles, Carbon 33 (1999) 1105.
  24. J. Laine, S. Yunes, Carbon 30 (1992) 601. https://doi.org/10.1016/0008-6223(92)90178-Y
  25. C.A. Philip, B.S. Girgis, Journal of Chemical Technology and Biotechnology 67 (1996) 248. https://doi.org/10.1002/(SICI)1097-4660(199611)67:3<248::AID-JCTB557>3.0.CO;2-1
  26. M. Jagtoyen, F. Derbyshire, Carbon 36 (1998) 1085. https://doi.org/10.1016/S0008-6223(98)00082-7
  27. D. Pantea, H. Darmstadt, S. Kaliaguine, L. Summchen, C. Roy, Carbon 39 (2001) 1147. https://doi.org/10.1016/S0008-6223(00)00239-6
  28. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd ed., Oxford University Press, New York, 1988.
  29. M. Kaus, J. Kowal, D.U. Sauer, Electrochimica Acta 55 (2010) 7516. https://doi.org/10.1016/j.electacta.2010.01.002
  30. T. Wigman, Carbon 27 (1989) 13. https://doi.org/10.1016/0008-6223(89)90152-8

Cited by

  1. Electrical conductivity of activated carbon–metal oxide nanocomposites under compression: a comparison study vol.16, pp.45, 2013, https://doi.org/10.1039/c4cp03952a
  2. CO2 adsorption characteristics of slit-pore shaped activated carbon prepared from cokes with high crystallinity vol.16, pp.1, 2013, https://doi.org/10.5714/cl.2015.16.1.045
  3. Fabrication of microporous and mesoporous carbon spheres for high‐performance supercapacitor electrode materials vol.39, pp.6, 2013, https://doi.org/10.1002/er.3301
  4. Effect of Ball Milling and KOH Activation on Electrochemical Properties of Pitch-based Carbon Fibers : Ball Milling/KOH Activation on Electrochemical Properties vol.36, pp.10, 2013, https://doi.org/10.1002/bkcs.10474
  5. 열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향 vol.26, pp.5, 2013, https://doi.org/10.14478/ace.2015.1085
  6. Sugarcane Bagasse Fly Ash as a No-Cost Adsorbent for Removal of Phenolic Inhibitors and Improvement of Biomass Saccharification vol.5, pp.12, 2017, https://doi.org/10.1021/acssuschemeng.7b03214
  7. Lignin‐derived heteroatom‐doped porous carbons for supercapacitor and CO2 capture applications vol.42, pp.8, 2018, https://doi.org/10.1002/er.4058
  8. Use of rice husk in waste cooking oil pretreatment vol.40, pp.5, 2013, https://doi.org/10.1080/09593330.2017.1397772
  9. Conversion of Oil Palm Kernel Shell Biomass to Activated Carbon for Supercapacitor Electrode Application vol.10, pp.6, 2013, https://doi.org/10.1007/s12649-018-0196-y
  10. Dispersion of Ag-AgBr particles in activated carbon as a recyclable photocatalyst for adsorption and degradation of pollutants vol.41, pp.1, 2013, https://doi.org/10.1080/01932691.2018.1554488
  11. Areca nut-derived porous carbons for supercapacitor and CO2 capture applications vol.26, pp.3, 2013, https://doi.org/10.1007/s11581-019-03261-5
  12. Flexible Type Symmetric Supercapacitor Electrode Fabrication Using Phosphoric Acid-Activated Carbon Nanomaterials Derived from Cow Dung for Renewable Energy Applications vol.5, pp.25, 2013, https://doi.org/10.1021/acsomega.0c00848
  13. Extremely high surface area of activated carbon originated from sugarcane bagasse vol.909, pp.None, 2013, https://doi.org/10.1088/1757-899x/909/1/012018
  14. Co-Zeolitic Imidazolate Framework@Cellulose Aerogels from Sugarcane Bagasse for Activating Peroxymonosulfate to Degrade P-Nitrophenol vol.13, pp.5, 2013, https://doi.org/10.3390/polym13050739
  15. Experimental and Numerical modeling on dye adsorption using pyrolyzed mesoporous biochar in Batch and fixed-bed column reactor: Isotherm, Thermodynamics, Mass transfer, Kinetic analysis vol.23, pp.None, 2013, https://doi.org/10.1016/j.surfin.2021.100985
  16. New low-cost biofilters for SARS-CoV-2 using Hymenachne grumosa as a precursor vol.331, pp.None, 2013, https://doi.org/10.1016/j.jclepro.2021.130000