DOI QR코드

DOI QR Code

Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption

  • Anbia, Mansoor (Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology) ;
  • Sheykhi, Sara (Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology)
  • Published : 2013.09.25

Abstract

Multi-walled carbon nanotubes (MWCNTs) incorporated MIL-53-Cu composite MOF material (MWCNT@MIL-53-Cu) has been synthesized by adding purified multi-walled carbon nanotube (MWCNT) in situ during the synthesis of MIL-53-Cu. Resulting sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmet-Teller (BET), and FT-IR analysis. Methane sorption capacities of MIL-53-Cu were observed to increase from 8.52 to 13.72 mmol $g^{-1}$ at 298 K and 35 bar. The increment in the methane uptake capacities of composite MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MIL-53-Cu by multi-walled carbon nanotube incorporation.

Keywords

References

  1. A. Celzard, V. Fierro, Energy Fuels 19 (2005) 573. https://doi.org/10.1021/ef040045b
  2. D. Lozano-Castello, J. Alcaniz-Monge, M.A. de la Casa-Lillo, D. Cazorla-Amoros, A. Linares-Solano, Fuel 81 (2003) 1777.
  3. V.C. Menon, S.J. Komarneni, Journal of Porous Materials 5 (1998) 43 https://doi.org/10.1023/A:1009673830619
  4. B. Zere Nezhad, Journal of Industrial and Engineering Chemistry 15 (2009) 143. https://doi.org/10.1016/j.jiec.2008.08.020
  5. K.H. Chung, B.G. Park, Journal of Industrial and Engineering Chemistry 15 (2009) 388. https://doi.org/10.1016/j.jiec.2008.11.012
  6. M. Anbia, M. Lashgari, Chemical Engineering Journal 150 (2009) 555. https://doi.org/10.1016/j.cej.2009.02.023
  7. M. Anbia, S.E. Moradi, Applied Surface Science 255 (2009) 5041. https://doi.org/10.1016/j.apsusc.2008.12.065
  8. M. Anbia, S.E. Moradi, Chemical Engineering Journal 148 (2009) 452. https://doi.org/10.1016/j.cej.2008.09.032
  9. M. Anbia, N. Mohammadi, K. Mohammadi, Journal of Hazardous Materials 176 (2010) 965. https://doi.org/10.1016/j.jhazmat.2009.11.135
  10. D. Leaf, H.J.H. Verolmec, W.F. Hunt, Environment International - Journal 29 (2003) 303 https://doi.org/10.1016/S0160-4120(02)00161-7
  11. M. Tucker, Ecological Economics 15 (1995) 215. https://doi.org/10.1016/0921-8009(95)00045-3
  12. IPCC 2007, in: R.K. Pachauri, A. Reisinger (Eds.), Climate Change (2007): Synthesis Report, IPCC, Geneva, Switzerland, 2008.
  13. C.D. Wood, B. Tan, A. Trewin, H.J. Niu, D. Bradshaw, M.J. Rosseinsky, Y.Z. Khimyak, N.L. Campbell, R. Kirk, E. Stockel, A.I. Cooper, Chemistry of Materials 19 (2007) 2034. https://doi.org/10.1021/cm070356a
  14. B.S. Ghanem, K.J. Msayib, N.B. McKeown, K.D.M. Harris, Z. Pan, P.M. Budd, A. Butler, J. Selbie, D. Book, A. Walton, Chemical Communications (2007) 67.
  15. N.B. McKeown, B. Ghanem, K.J. Msayib, P.M. Budd, C.E. Tattershall, K. Mahmood, S. Tan, D. Book, H.W. Langmi, A. Walton, Angewandte Chemie International Edition 45 (2006) 1804. https://doi.org/10.1002/anie.200504241
  16. N.B. McKeow n, P.M. Budd, D. Book, Macromolecular Rapid Communications 28 (2007) 995. https://doi.org/10.1002/marc.200700054
  17. J. Germain, J. Hradil, J.M.J. Frechet, F. Svec, Chemistry of Materials 18 (2006) 4430. https://doi.org/10.1021/cm061186p
  18. M. Anbia, V. Hoseini, S. Sheykhi, Journal of Industrial and Engineering Chemistry 18 (2012) 1149. https://doi.org/10.1016/j.jiec.2012.01.014
  19. J.W. Lee, H.C. Kang, W.G. Shim, C. Kim, H. Moon, Journal of Chemical and Engineering Data 51 (2006) 963. https://doi.org/10.1021/je050467v
  20. H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Nature 402 (1999) 276. https://doi.org/10.1038/46248
  21. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Science 295 (2002) 469. https://doi.org/10.1126/science.1067208
  22. O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423 (2003) 705. https://doi.org/10.1038/nature01650
  23. H.K. Chae, D.Y. Siberio-Perez, J. Kim, M.A. Eddaoudi, J. Matzger, M. O'Keeffe, O.M. Yaghi, Nature 427 (2004) 523. https://doi.org/10.1038/nature02311
  24. J. Rowsell, A. Millward, K. Park, O.M. Yaghi, Journal of the American Chemical Society 126 (2004) 5666. https://doi.org/10.1021/ja049408c
  25. X.C. Huang, Y.Y. Lin, J.P. Zhang, X.M. Chen, Angewandte Chemie International Edition 45 (2006) 1557. https://doi.org/10.1002/anie.200503778
  26. K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 10186. https://doi.org/10.1073/pnas.0602439103
  27. K.P. Prasanth, P. Rallapalli, M.C. Raj, H.C. Bajaj, R. VirJasra, International Journal of Hydrogen Energy 36 (2011) 7594. https://doi.org/10.1016/j.ijhydene.2011.03.109
  28. C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, G. Ferey, Journal of the American Chemical Society 124 (2002) 13519. https://doi.org/10.1021/ja0276974
  29. L. Yh, C. Xu, B. Wei, X. Zhang, M. Zheng, D. Wu, Chemistry of Materials 14 (2002) 483. https://doi.org/10.1021/cm010738v
  30. Z. Xiang, Z. Hu, D. Cao, W. Yang, J. Lu, B. Han, W. Wang, Angewandte Chemie International Edition 50 (2011) 491. https://doi.org/10.1002/anie.201004537

Cited by

  1. In Situ Neutron Powder Diffraction and X-ray Photoelectron Spectroscopy Analyses on the Hydrogenation of MOF-5 by Pt-Doped Multiwalled Carbon Nanotubes vol.118, pp.11, 2013, https://doi.org/10.1021/jp411955y
  2. Study of the temperature and solvent content effects on the structure of Cu-BTC metal organic framework for hydrogen storage vol.5, pp.31, 2015, https://doi.org/10.1039/c5ra01890k
  3. Hybrid adsorbent nonwoven structures: a review of current technologies vol.51, pp.9, 2013, https://doi.org/10.1007/s10853-016-9741-x
  4. Incorporation of single-walled aluminosilicate nanotubes for the control of crystal size and porosity of zeolitic imidazolate framework-L vol.18, pp.6, 2013, https://doi.org/10.1039/c5ce02031j
  5. Composites of metal-organic frameworks and carbon-based materials: preparations, functionalities and applications vol.4, pp.10, 2013, https://doi.org/10.1039/c5ta09924b
  6. A review: methane capture by nanoporous carbon materials for automobiles vol.17, pp.1, 2013, https://doi.org/10.5714/cl.2016.17.1.018
  7. The Role of Multiwall Carbon Nanotubes in Cu‐BTC Metal‐Organic Frameworks for CO2 Adsorption vol.63, pp.12, 2013, https://doi.org/10.1002/jccs.201600277
  8. Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI) vol.10, pp.10, 2013, https://doi.org/10.1007/s12274-017-1565-8
  9. Advances of Metal‐Organic Frameworks in Energy and Environmental Applications vol.35, pp.10, 2017, https://doi.org/10.1002/cjoc.201700151
  10. Highly sensitive electrochemical sensor for estradiol based on the signal amplification strategy of Cu-BDC frameworks vol.22, pp.2, 2013, https://doi.org/10.1007/s10008-017-3778-x
  11. Synthesis of Cu‐doped MOF‐235 for the Degradation of Methylene Blue under Visible Light Irradiation vol.40, pp.2, 2013, https://doi.org/10.1002/bkcs.11650
  12. Preparation and evaluation of nanoporous-pyramids structured silicon powder as an effective photocatalyst for degradation of methyl red vol.16, pp.4, 2013, https://doi.org/10.1007/s13762-017-1630-6
  13. Strategies for Overcoming Defects of HKUST‐1 and Its Relevant Applications vol.6, pp.13, 2013, https://doi.org/10.1002/admi.201900423
  14. 통계학적 실험계획법 해석을 통한 MOF-235 합성 최적화 vol.30, pp.5, 2013, https://doi.org/10.14478/ace.2019.1066
  15. Removal of Hydrogen Sulfide from Gas Streams Using Porous Materials: A Review vol.58, pp.49, 2019, https://doi.org/10.1021/acs.iecr.9b03800
  16. An overview and outlook on gas adsorption: for the enrichment of low concentration coalbed methane vol.55, pp.6, 2013, https://doi.org/10.1080/01496395.2019.1585454
  17. Enhancing the Fenton-like Catalytic Activity of nFe2O3 by MIL-53(Cu) Support: A Mechanistic Investigation vol.54, pp.8, 2020, https://doi.org/10.1021/acs.est.0c00203
  18. Synthesis of Nitrogen‐Doped CNT‐Based MOF Hybrids for Adsorptive Desulfurization of the Gas Stream vol.5, pp.43, 2020, https://doi.org/10.1002/slct.202002618
  19. Constructing a Resistive Gas Sensor Based on the Highly Stable Mil-53(Fe)/Ag/CNT Ternary Nanocomposite for Sensing Polar Volatile Organic Compounds Such as Methanol vol.76, pp.3, 2013, https://doi.org/10.1134/s1061934821030096
  20. A binary MOF of iron and copper for treating ciprofloxacin-contaminated waste water by an integrated technique of adsorption and photocatalytic degradation vol.45, pp.37, 2013, https://doi.org/10.1039/d1nj02880d
  21. Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications vol.18, pp.4, 2022, https://doi.org/10.1002/smll.202104628