DOI QR코드

DOI QR Code

Photocatalytic degradation of methyl tert-butyl ether (MTBE) by Fe-$TiO_2$ nanoparticles

  • Safari, Mojtaba (Department of Chemical Engineering, Amirkabir University of Technology) ;
  • Nikazar, Manouchehr (Department of Chemical Engineering, Amirkabir University of Technology) ;
  • Dadvar, Mitra (Department of Chemical Engineering, Amirkabir University of Technology)
  • Published : 2013.09.25

Abstract

Nowadays, since the underground waters are known as the main source for supplying the drinking water, their pollution to the organic contaminants such as methyl tert-butyl ether (MTBE) is a very significant issue. Therefore, in this study, photocatalytic degradation of MTBE was investigated in the aqueous soloution of Fe-$TiO_2$ nanoparticale under UV irradiation (wavelenght 254 nm) in a batch reactor. The Fe-$TiO_2$ mixed oxides were prepared by sol-gel impregnation method. The samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM) and BET specfic surface area. Then, the effect of various operational parameters namely pH, catalyst loading, molar ratio of $[H_2O_2]_0/[MTBE]_0$ and UV light intensity on degradation of aqueous MTBE were evaluated in a batch reactor. The optimal condition to achieve the best degradation for the initial concentration of 75 ppm MTBE was found at pH 7, catalyst concentration 2 g/L, molar ratio of $[H_2O_2]_0/[MTBE]_0$4, and UV irradiation 24 W. Total degradation of MTBE with initial concentration of 75 ppm was reached in optimal condition after 70 min. In addition, investigations were also carried out to determine the appropriate kinetics of MTBE degradation using UV/Fe-$TiO_2/H_2O_2$ process in optimal condition.

Keywords

References

  1. USEPA, Office of Water, EPA-822-f-97-009 (1997).
  2. M. Rosell, Trends in Analytical Chemistry 25 (2006) 1016. https://doi.org/10.1016/j.trac.2006.06.011
  3. Y. Zang, R. Farnood, Applied Catalysis B 57 (2005) 275. https://doi.org/10.1016/j.apcatb.2004.11.005
  4. Q. Hu, C. Zhang, Z. Wang, Y. Chen, K. Mao, X. Zhang, Y. Xiong, M. Zhu, Journal of Hazardous Materials 154 (2008) 795. https://doi.org/10.1016/j.jhazmat.2007.10.118
  5. F.W. Pontius, Journal of the American Water Works Association 90 (1998) 38.
  6. N. Kuburovic, M. Todorovic, V. Raicevic, Desalination 213 (2007) 123. https://doi.org/10.1016/j.desal.2006.03.605
  7. F.E. Ahmed, Toxicology Letters 123 (2001) 89. https://doi.org/10.1016/S0378-4274(01)00375-7
  8. A. Franios, H. Mathis, D. Godefroy, P. Piveteau, F. Fayolle, F. Monot, Applied and Environment Microbiology 68 (2002) 2754. https://doi.org/10.1128/AEM.68.6.2754-2762.2002
  9. S.R. Cater, B.W. Dussert, N. Megonnell, Pollution Engineering 32 (2000) 36.
  10. J. Arana, A. Pena Alonso, J.M. Dona Rodriguez, J.A. Herrera Melian, O. Gonzalez Diaz, J. Perez Pena, Applied Catalysis B 78 (2008) 355. https://doi.org/10.1016/j.apcatb.2007.09.023
  11. G. Colon, M. Maicu, M.C. Hidalgo, J.A. Navio, Applied Catalysis B 67 (2006) 41. https://doi.org/10.1016/j.apcatb.2006.03.019
  12. J. Liqianga, F. Hongganga, W. Baiqia, W. Dejunb, X. Baifua, Li Shudana, S. Jiazhongb, Applied Catalysis B 62 (2006) 282. https://doi.org/10.1016/j.apcatb.2005.08.012
  13. S. Chang, R. Doong, Journal of Physical Chemistry B 110 (2006) 20808. https://doi.org/10.1021/jp0626566
  14. H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, Y. Yan, Chemistry of Materials 16 (2004) 846. https://doi.org/10.1021/cm035090w
  15. M. Zh, J. Yu, Bei Ch, Journal of Hazardous Materials 137 (2006) 1838. https://doi.org/10.1016/j.jhazmat.2006.05.028
  16. T. Tonga, J. zhanga, B. Tiana, F. Chena, D. Heb, Journal of Hazardous Materials 155 (2008) 572. https://doi.org/10.1016/j.jhazmat.2007.11.106
  17. M. Mrowetz, E. Selli, Journal of Photochemistry and Photobiology A 180 (2006) 15. https://doi.org/10.1016/j.jphotochem.2005.09.009
  18. X.R. Xu, H.B. Li, J.D. Gu, Chemosphere 63 (2006) 254. https://doi.org/10.1016/j.chemosphere.2005.07.062
  19. A. Eslami, S. Nasseri, Journal of Chemical Technology and Biotechnology 83 (2008) 1447. https://doi.org/10.1002/jctb.1919
  20. M. Nikazar, Kh Gholivand, K. Mahanpoor, Desalination 219 (2008) 293. https://doi.org/10.1016/j.desal.2007.02.035
  21. S.R. Taffarel, M.A. Lansarin, C.C. Moro, Journal of the Brazilian Chemical Society 22 (2011) 1872. https://doi.org/10.1590/S0103-50532011001000007
  22. S. Senthilkumaar, K. Porkodi, Journal of Colloid Interface Science 288 (2005) 184. https://doi.org/10.1016/j.jcis.2005.02.066
  23. I.K. Konstantinou, T.A. Albanis, Applied Catalysis B 49 (2004) 1. https://doi.org/10.1016/j.apcatb.2003.11.010
  24. C. Galindo., P. Jacques, A. Kalt, Chemosphere 45 (2001) 997. https://doi.org/10.1016/S0045-6535(01)00118-7
  25. S. In, A. Orlov, F. Garcia, M. Tikhov, D.S. Wright, R.M. Lambert, Chemical Communications 40 (2006) 4236.

Cited by

  1. Response surface analysis of photocatalytic degradation of methyl tert-butyl ether by core/shell Fe 3 O 4 /ZnO nanoparticles vol.12, pp.None, 2013, https://doi.org/10.1186/2052-336x-12-1
  2. Photocatalytic Degradation of Methyl tert-Butyl Ether (MTBE): A review vol.3, pp.1, 2013, https://doi.org/10.12989/aer.2014.3.1.011
  3. Electrochemiluminescent pH sensor measured by the emission potential of TiO2 nanocrystals and its biosensing application vol.30, pp.1, 2015, https://doi.org/10.1002/bio.2697
  4. Application of Response Surface Methodology for Optimization of Water Treatment by Fe3O4/SiO2/TiO2 Core-Shell Nano-Photocatalyst vol.203, pp.11, 2013, https://doi.org/10.1080/00986445.2016.1218335
  5. Comparative study of Co and Ni substituted ZnO nanoparticles: synthesis, structural, optical and photocatalytic activity vol.28, pp.14, 2013, https://doi.org/10.1007/s10854-017-6832-7
  6. Efficiency evaluation of the photocatalytic degradation of zinc oxide nanoparticles immobilized on modified zeolites in the removal of styrene vapor from air vol.34, pp.12, 2013, https://doi.org/10.1007/s11814-017-0174-2
  7. Adsorption Studies of Methyl Tert-butyl Ether from Environment vol.46, pp.4, 2017, https://doi.org/10.1080/15422119.2016.1270966
  8. Influence of Calcination Temperature towards Fe-TiO2 for Visible-Driven Photocatalyst vol.888, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/msf.888.435
  9. Synthesis and Photocatalysis of Zn0.97‐xCu0.03CexO Powders vol.52, pp.11, 2013, https://doi.org/10.1002/crat.201700096
  10. Photocatalytic Degradation of Methyl Tert-Butyl Ether (MTBE) from Aqueous Solution: A Review vol.3, pp.1, 2017, https://doi.org/10.29252/jhehp.3.1.5
  11. Solid Acids for the Reaction of Bioderived Alcohols into Ethers for Fuel Applications vol.9, pp.2, 2013, https://doi.org/10.3390/catal9020172
  12. One‐step synthesis of NiO nano‐photocatalyst by wire explosion process and its application in photocatalytic degradation of Methyl tert‐butyl ether vol.33, pp.2, 2019, https://doi.org/10.1111/wej.12387
  13. TiO2 Assisted Photocatalytic Decomposition of 2-Chloronaphthalene on Iron Nanoparticles in Aqueous Systems: Synergistic Effect and Intermediate Products vol.93, pp.8, 2013, https://doi.org/10.1134/s0036024419080119
  14. TiO2 Assisted Photocatalytic Decomposition of 2-Chloronaphthalene on Iron Nanoparticles in Aqueous Systems: Synergistic Effect and Intermediate Products vol.93, pp.8, 2013, https://doi.org/10.1134/s0036024419080119
  15. TiO2 Assisted Photocatalytic Decomposition of 2-Chloronaphthalene on Iron Nanoparticles in Aqueous Systems: Synergistic Effect and Intermediate Products vol.93, pp.8, 2013, https://doi.org/10.1134/s0036024419080119
  16. Structural studies and photocatalytic properties of Mn and Zn co-doping on TiO2 prepared by single step sonochemical method vol.171, pp.None, 2013, https://doi.org/10.1016/j.radphyschem.2020.108714