DOI QR코드

DOI QR Code

Properties of the Scattering Layer Inserted Dye Sensitized Solar Cells

스캐터링층 도입에 따른 염료감응태양전지의 물성평가

  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Published : 2013.10.05

Abstract

We propose a working electrode with a scattering layer inserted for dye-sensitized solar cells (DSSCs) with the following structure: glass/FTO/blocking layer/$TiO_2$/scattering layer/dye/electrolyte/Pt/ FTO/glass. A working electrode without a scattering layer was also prepared using a similar method for comparison. The microstructure was examined by optical microscopy and field emission scanning electron microscopy (FE-SEM). The photovoltaic properties, such as the short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), energy conversion efficiency (ECE) and impedance were characterized using a solar simulator and potentiostat. FE-SEM confirmed that the blocking layer with 20 nm grains and the scattering layer with 350-450 nm grains had been prepared. The Jsc and Voc increased, and impedance analysis revealed a decrease in the electron transfer resistance and electron recombination resistance at the $TiO_2$/electrolye interface. The ECE with the scattering layer was 6.35%, which was 20% higher than that observed in the ECE without the scattering layer.

Keywords

References

  1. M. Grätzel, Inorg. Chem. 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  2. S. Y. Hsu, C. H. Tsai, C. Y. Lu, Y. T. Tsai, T. W. Huang, Y. H. Jhang, Y. F. Chen, C. C. Wu, and Y. S. Chen, Org. Electro. 13, 856 (2012). https://doi.org/10.1016/j.orgel.2012.01.035
  3. S. S. Mali, C. A. Betty, P. N. Bhosale, and P. S. Patil, Electrochim. Acta 59, 113 (2012). https://doi.org/10.1016/j.electacta.2011.10.043
  4. K. J. Hwang, W. G. Shim, S. H. Jung, S. J. Yoo, and J. W. Lee, Appl. Surf. Sci. 17, 5428 (2010).
  5. Y. Ooyam and Y. Harima, Eur. J. Org. Chem. 2903 (2009).
  6. P. Wang, S. M. Zakeeruddin, J. E. Moser, and M. Gratzel, J. Phys. Chem. B 107, 13280 (2003). https://doi.org/10.1021/jp0355399
  7. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, Nature Materialsm 2, 402 (2003). https://doi.org/10.1038/nmat904
  8. E. Olsen, G. Hagen, and S. E. Lindquist, Sol. Energy Mater. Sol. Cells 63, 267 (2000). https://doi.org/10.1016/S0927-0248(00)00033-7
  9. A. Kay and M. Gratzel, Sol. Energy Mater. Sol. Cells 44, 99 (1996). https://doi.org/10.1016/0927-0248(96)00063-3
  10. G. K. Mor, K Shankar, M Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett. 6, 215 (2006). https://doi.org/10.1021/nl052099j
  11. H. Xu, X. Tao, D. T. Wang, Y. Z. Zheng, and J. F. Chen, Electrochim. Acta 55, 2280 (2010). https://doi.org/10.1016/j.electacta.2009.11.067
  12. J. Jin, S. Isoda, F. Wang, and M. Adachi, J. Phys. Chem. B 110, 2087 (2006). https://doi.org/10.1021/jp055824n
  13. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. B 110, 16159. (2006). https://doi.org/10.1021/jp062865q
  14. M. Gräzel, J. Photochem. Photobiol. C 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  15. T. H. Meen, W. Water, W. R. Chen, S. M. Chao, L. W. Ji, and C. J. Huang, J. Phys. Chem. Solids 70, 472 (2009). https://doi.org/10.1016/j.jpcs.2008.12.002
  16. M. Adachi, Y. Murata, J. T. Kao, J. T. Jiu, M. Sakamoto, and F. M. Wang, J. Am. Chem. Soc. 126, 14943 (2004). https://doi.org/10.1021/ja048068s
  17. S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, J. Photochem. photobiol. A Chem. 164, 145 (2004). https://doi.org/10.1016/j.jphotochem.2003.11.016
  18. S. G. Chen, S. Chapple, Y. Diamnat, and A. Zaban, Chem. Mater. 13, 4629 (2001). https://doi.org/10.1021/cm010343b
  19. Y. J. Kim, Y. H. Lee, M. H. Lee, H. J. Kim, J. H. Pan, G. I. Lim, Y. S. Choi, K. Kim, N. G. Park, J. Kim, and H. Lee, Adv. Funct. Mater. 19, 1093 (2009). https://doi.org/10.1002/adfm.200801540
  20. H. J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N. G. Park, Inorg. Chim. Acta. 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
  21. D. Kuang, S. Ito, B. Wenger, C. Klein, J. E. Moser, R. H. Baker, S. M. Zakeeruddin, and M. Gratzel, J. Am. Chem. Soc. 128, 4146 (2006). https://doi.org/10.1021/ja058540p