DOI QR코드

DOI QR Code

Effect of Er doping on optical band gap energy of $TiO_2$ thin films prepared by spin coating

  • Lee, Deuk Yong (Department of Materials Engineering, Daelim University) ;
  • Kim, Jin-Tae (Department of Materials Engineering, Daelim University) ;
  • Park, Ju-Hyun (Department of Materials Engineering, Daelim University) ;
  • Kim, Young-Hun (Department of Materials Engineering, Korea Aerospace University) ;
  • Lee, In-Kyu (Department of Materials Engineering, Korea Aerospace University) ;
  • Lee, Myung-Hyun (Green Ceramics Division, Korea Institute of Ceramic and Engineering) ;
  • Kim, Bae-Yeon (Department of Materials Science and Engineering, University of Incheon)
  • Published : 2013.09.30

Abstract

In order to evaluate the effect of Er doping in the range of 0-1.0 mol% on optical indirect band gap energy ($E_g$) of the film, the Er-doped $TiO_2$ ($Er-TiO_2$) thin films were spin-coated onto fluorine-doped $SnO_2$ coated (FTO) glasses. Glancing angle X-ray diffraction (GAXRD) results indicated that the films whose thickness was 550 nm consisted of pure anatase and FTO substrate. The anatase (101) $TiO_2$ peaks became broader and weaker with the rise in Er content. The apparent crystallite size decreased from 12 nm to 10 nm with increasing the amount of Er from 0 mol% to 1.0 mol%. UV-vis spectrophotometry showed that the values of $E_g$ decreased from 3.25 eV to 2.81 eV with the increase of Er doping from 0 to 0.7 mol%, but changed to 2.89 eV when Er content was 1.0 mol%. The reduction in $E_g$ might be attributed to electron and/or hole trapping at the donor and acceptor levels in the $TiO_2$ band structure.

Keywords

References

  1. Y. Choi, S. Kim, Y. Song, D.Y. Lee, J. Mater. Sci. 39 (2004) 5695. https://doi.org/10.1023/B:JMSC.0000040078.09843.cb
  2. C. Liang, M. Hou, S. Zhou, F. Li, C. Liu, T. Liu, Y. Gao, X. Wang, J. Lu, J. Hazard. Mater. B 138 (2006) 471. https://doi.org/10.1016/j.jhazmat.2006.05.066
  3. J. Shi, J. Zheng, P. Wu, J. Hazard. Mater. 161 (2009) 416. https://doi.org/10.1016/j.jhazmat.2008.03.114
  4. F.B. Li, X.Z. Li, M.F. Hou, Appl. Catal. B: Environ. 49 (2008) 185.
  5. C. Chiou, R. Juang, J. Hazard. Mater. 149 (2007) 1. https://doi.org/10.1016/j.jhazmat.2007.03.035
  6. Z.M. El-Bahy, A.A. Ismail, R.M. Mohamed, J. Hazard. Mater. 166 (2009) 138. https://doi.org/10.1016/j.jhazmat.2008.11.022
  7. K.M. Parida, N. Sahu, J. Mol. Catal. A: Chem. 287 (2008) 151. https://doi.org/10.1016/j.molcata.2008.02.028
  8. K.T. Ranjit, I. Willner, S.H. Bossmann, A.M. Braun, Environ. Sci. Technol. 35 (2001) 1544. https://doi.org/10.1021/es001613e
  9. M. Muruganandham, M. Swaminathan, Dyes Pigm. 68 (2006) 133. https://doi.org/10.1016/j.dyepig.2005.01.004
  10. A.L. Linsebiger, G.Q. Lu Jr., J.T. Yates, Chem. Rev. 95 (1995) 735. https://doi.org/10.1021/cr00035a013
  11. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46 (2011) 855. https://doi.org/10.1007/s10853-010-5113-0
  12. A.J. Kenyon, Prog. Quantum Electron. 26 (2002) 225. https://doi.org/10.1016/S0079-6727(02)00014-9
  13. A. Polman, Phys. B 300 (2001) 78. https://doi.org/10.1016/S0921-4526(01)00573-7
  14. E. Sanoyama, H. Kobayashi, S. Yabushita, J. Mol. Struct. 451 (1998) 189. https://doi.org/10.1016/S0166-1280(98)00171-7
  15. D.Y. Lee, B. Kim, N. Cho, Y. Oh, Curr. Appl. Phys. 11 (2011) S324.
  16. D.Y. Lee, J.Y. Park, B. Kim, N. Cho, J. Nanosci. Nanotechnol. 12 (2012) 1599. https://doi.org/10.1166/jnn.2012.4608
  17. M. Jin, X. Zhang, A.V. Emeline, Z. Lin, D.A. Tryk, T. Murakami, A. Fujishima, Chem. Commun. 43 (2006) 4483.
  18. D.Y. Lee, M. Lee, N. Cho, Curr. Appl. Phys. 12 (2012) 1229. https://doi.org/10.1016/j.cap.2012.03.007
  19. J. Tauc, A. Menth, J. Non-Cryst. Solids 569 (1972) 8-10.
  20. A. Nakaruk, D. Ragazzon, C.C. Sorrell, Thin Solid Films 518 (2010) 3735. https://doi.org/10.1016/j.tsf.2009.10.109
  21. D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. 156 (2000) 200. https://doi.org/10.1016/S0169-4332(99)00508-5
  22. A. Nakaruk, C.Y. Lin, D.S. Perera, C.C. Sorrell, J. Sol-Gel Sci. Technol. 55 (2010) 328. https://doi.org/10.1007/s10971-010-2257-y
  23. C.Y.W. Lin, D. Channei, P. Koshy, A. Nakaruk, C.C. Sorrell, Ceram. Int. 38 (2012) 3943. https://doi.org/10.1016/j.ceramint.2012.01.047
  24. C.Y.W. Lin, A. Nakaruk, C.C. Sorrell, Prog. Org. Coat. 74 (2012) 645. https://doi.org/10.1016/j.porgcoat.2011.09.030
  25. M. Sreemany, S. Sen, Mater. Res. Bull. 42 (2007) 177. https://doi.org/10.1016/j.materresbull.2006.04.033
  26. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, J. Appl. Phys. 75 (1994) 2042. https://doi.org/10.1063/1.356306

Cited by

  1. 다공성 폴리(ε-카프로락톤)/실리카 복합체의 제조 및 특성평가 vol.39, pp.2, 2013, https://doi.org/10.7317/pk.2015.39.2.323
  2. Effect of trivalent rare-element doping on structural and optical properties of SnO2 thin films deposited by dip coating deposition technique vol.26, pp.7, 2013, https://doi.org/10.1007/s10854-015-3049-5
  3. Temperature influence on microstructure and optical properties of TiO2-Au thin films vol.122, pp.2, 2013, https://doi.org/10.1007/s00339-016-9681-y
  4. Performance of Erbium-doped TiO2 thin film grown by physical vapor deposition technique vol.123, pp.9, 2013, https://doi.org/10.1007/s00339-017-1180-2
  5. Preparation of erbium ion-doped TiO2films and the study of their photocatalytic activity under simulated solar light vol.38, pp.11, 2017, https://doi.org/10.1088/1674-4926/38/11/113004
  6. Preparation of erbium ion-doped TiO2films and the study of their photocatalytic activity under simulated solar light vol.38, pp.11, 2017, https://doi.org/10.1088/1674-4926/38/11/113004
  7. Investigation of optical and electrical properties of erbium-doped TiO2 thin films for photodetector applications vol.29, pp.22, 2013, https://doi.org/10.1007/s10854-018-0090-1
  8. Study on Resistive Switching Property of Ti Doped Novel NiO Thin Films vol.303, pp.None, 2013, https://doi.org/10.1088/1757-899x/303/1/012007
  9. Influence of the electron buffer layer on the photovoltaic performance of planar Sb2(SxSe1‐x)3 solar cells vol.26, pp.9, 2013, https://doi.org/10.1002/pip.3007
  10. Thickness dependence of structural, optical and morphological properties of sol-gel derived TiO2 thin film vol.6, pp.1, 2019, https://doi.org/10.1088/2053-1591/aae4d0
  11. Effect of Er doping on the microstructural, optical, and photocatalytic activity of TiO2 thin films vol.6, pp.1, 2013, https://doi.org/10.1088/2053-1591/aae4fd
  12. Non-volatile memory property of $${\text{Er}}_{2}{\text{O}}_{3}$$ Er 2 O 3 doped $${\text{Sn}}{\text{O}}_{2}$$ Sn O 2 nanowires synthesized using GLAD technique vol.30, pp.9, 2013, https://doi.org/10.1007/s10854-019-01151-0
  13. GLAD synthesised erbium doped In2O3 nano-columns for UV detection vol.30, pp.13, 2013, https://doi.org/10.1007/s10854-019-01638-w
  14. Structural, optical and photocatalytic properties of erbium (Er3+) and yttrium (Y3+) doped TiO2 thin films with remarkable self-cleaning super-hydrophilic properties vol.10, pp.29, 2020, https://doi.org/10.1039/d0ra02242j
  15. The structural and optical band gap energy evaluation of nano TiO2 powders by diffuse reflectance spectroscopy prepared via combustion method vol.10, pp.4, 2013, https://doi.org/10.1007/s40089-020-00313-x
  16. Improved photoelectrochemical properties of TiO2 nanotubes doped with Er and effects on hydrogen production from water splitting vol.267, pp.None, 2013, https://doi.org/10.1016/j.chemosphere.2020.129289
  17. Optimization of photocatalytic degradation conditions and toxicity assessment of norfloxacin under visible light by new lamellar structure magnetic ZnO/g-C3N4 vol.225, pp.None, 2021, https://doi.org/10.1016/j.ecoenv.2021.112742