DOI QR코드

DOI QR Code

Detection of Foreign Antigen-specific $CD4^+Foxp3^+$ Regulatory T Cells by MHC Class II Tetramer and Intracellular CD154 Staining

  • Choi, Jin Young (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Eo, Seong Kug (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
  • Received : 2013.09.23
  • Accepted : 2013.11.25
  • Published : 2013.12.31

Abstract

The unrestricted population of $CD4^+Foxp3^+$ regulatory T (Treg) cells, which have been known to control the expression of autoimmune diseases and protective immunity to inflammatory reactions, has led to greater appreciation of functional plasticity. Detecting and/or isolating Ag-specific $CD4^+Foxp3^+$ Tregs at the single cell level are required to study their function and plasticity. In this study, we established and compared both MHC class II tetramer and intracellular CD154 staining, in order to detect $CD4^+Foxp3^+$ Treg specific for foreign Ag in acute and chronic infections with lymphocytic choriomeningitis virus (LCMV). Our results revealed that MHC class II tetramer staining showed a lower detection rate of LCMV $GP_{66-77}$-specific $CD4^+$ T cells because most of MHC class II tetramers were unbound and unstable when combined staining was performed with intracellular cytokines. In contrast, intracellular CD154 staining was revealed to be easier and simple for detecting LCMV $GP_{66-77}$-specific $CD4^+$ T cells, compared to MHC class II tetramer staining. Subsequently, we employed intracellular CD154 staining to detect LCMV $GP_{66-77}$-specific $CD4^+Foxp3^+$ Tregs using $Foxp3^{GFP}$ knock-in mouse, and found that LCMV $GP_{66-77}$-specific $CD4^+Foxp3^+$ Tregs and polyclonal $CD4^+Foxp3^+$ Tregs showed differential expansion in mice infected with LCMV Arms or Cl13 at acute (8 and 13 days pi) and chronic phases (35 days pi). Therefore, our results provide insight into the valuable use of intracellular CD154 staining to detect and characterize foreign Ag-specific $CD4^+Foxp3^+$ Treg in various models.

Keywords

References

  1. Valencia, X. and P. E. Lipsky. 2007. $CD4^+CD25^+FoxP3^+$ regulatory T cells in autoimmune diseases. Nat. Clin. Pract. Rheumatol. 3: 619-626.
  2. Huan, J., N. Culbertson, L. Spencer, R. Bartholomew, G. G. Burrows, Y. K. Chou, D. Bourdette, S. F. Ziegler, H. Offner, and A. A. Vandenbark. 2005. Decreased Foxp3 levels in multiple sclerosis patients. J. Neurosci. Res. 81: 45-52. https://doi.org/10.1002/jnr.20522
  3. Xu, W., Q. Lan, M. Chen, H. Chen, N. Zhu, X. Zhou, J. Wang, H. Fan, C. S. Yan, J. L. Kuang, D. Warburton, D. Togbe, B. Ryffel, S. G. Zheng, and W. Shi. 2012. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation. PLoS One. 7: e40314. https://doi.org/10.1371/journal.pone.0040314
  4. Adeegbe, D., R. B. Levy, and T. R. Malek. 2010. Allogeneic T regulatory cell-mediated transplantation tolerance in adoptive therapy depends on dominant peripheral suppression and central tolerance. Blood 115: 1932-1940. https://doi.org/10.1182/blood-2009-08-238584
  5. Li, P., Y. Gan, B. L. Sun, F. Zhang, B. Lu, Y. Gao, W. Liang, A. W., Thomson, J. Chen, and X. Hu. 2012. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann. Neurol. in press: doi:10.1002/ana.23815.
  6. Cao, Y., W. Xu, and S. Xiong. 2013. Adoptive Transfer of Regulatory T Cells Protects against Coxsackievirus B3-Induced Cardiac Fibrosis. PLoS One 8: e74955. https://doi.org/10.1371/journal.pone.0074955
  7. Vasconcelos, J. F., B. S. Souza, T. F. Lins, L. M. Garcia, C. M. Kaneto, G. P. Sampaio, A. C. de Alcantara, C. S. Meira, S. G. Macambira, R. Ribeiro-Dos-Santos, and M. B. Soares. 2013. Administration of granulocyte colony-stimulating factor induces immunomodulation, recruitment of T regulatory cells, reduction of myocarditis and decrease of parasite load in a mouse model of chronic Chagas disease cardiomyopathy. FASEB J. in press: doi:10.1096/fj.13-229351.
  8. Kleinschnitz, C., P. Kraft, A. Dreykluft, I. Hagedorn, K. Gobel, M. K. Schuhmann, F. Langhauser, X. Helluy, T. Schwarz, S. Bittner, C. T. Mayer, M. Brede, C. Varallyay, M. Pham, M. Bendszus, P. Jakob, T. Magnus, S. G. Meuth, Y. Iwakura, A. Zernecke, T. Sparwasser, B. Nieswandt, G. Stoll, and H. Wiendl. 2013. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121: 679-691. https://doi.org/10.1182/blood-2012-04-426734
  9. Yadav, M., S. Stephan, and J. A. Bluestone. 2013. Peripherally induced tregs - role in immune homeostasis and autoimmunity. Front Immunol. 4: 232.
  10. Sakaguchi, S., M. Ono, R. Setoguchi, H. Yagi, S. Hori, Z. Fehervari, J. Shimizu, T.akahashi, and T. Nomura. 2006. $Foxp3^+$ $CD25^+$ $CD4^+$ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212: 8-27. https://doi.org/10.1111/j.0105-2896.2006.00427.x
  11. Komatsu, N., M. E. Mariotti-Ferrandiz, Y. Wang, B. Malissen, H. Waldmann, and S. Hori. 2009. Heterogeneity of natural $Foxp3^+$ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl. Acad. Sci. U.S.A. 106: 1903-1908.
  12. Pacholczyk, R. and J. Kern. 2008. The T-cell receptor repertoire of regulatory T cells. Immunology 125: 450-458. https://doi.org/10.1111/j.1365-2567.2008.02992.x
  13. Song, K. D., S. Hwang, and C. H. Yun. 2011. T cell receptor signaling that regulates the development of intrathymic natural regulatory T cells. Immune Netw. 11: 336-341. https://doi.org/10.4110/in.2011.11.6.336
  14. Curotto de Lafaille, M. A. and J. J. Lafaille. 2009. Natural and adaptive $Foxp3^+$ regulatory T cells: more of the same or a division of labor? Immunity 30: 626-635. https://doi.org/10.1016/j.immuni.2009.05.002
  15. Altman, J. D., P. A. Moss, P. J. Goulder, D. H. Barouch, M. G. McHeyzer-Williams, J. I. Bell, A. J. McMichael, and M. M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94-96. https://doi.org/10.1126/science.274.5284.94
  16. Krueger, L. A., C. T. Nugent, and J. Hampl. 2004. Identification of human antigen-specific T cells using MHC class I and class II tetramers. Curr. Protoc. Cytom. Chapter 6: Unit 6.18.
  17. Cecconi, V., M. Moro, S. Del Mare, P. Dellabona, and G. Casorati. 2008. Use of MHC class II tetramers to investigate $CD4^+$ T cell responses: problems and solutions. Cytometry A 73: 1010-1018.
  18. Guillaume, P., D. Dojcinovic, and I. F. Luescher. 2009. Soluble MHC-peptide complexes: tools for the monitoring of T cell responses in clinical trials and basic research. Cancer Immun. 9: 7-12.
  19. Chattopadhyay, P. K., J. Yu, and M. Roederer. 2005. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat. Med. 11: 1113-1117. https://doi.org/10.1038/nm1293
  20. Frentsch, M., O. Arbach, D. Kirchhoff, B. Moewes, M. Worm, M. Rothe, A. Scheffold, and A. Thiel. 2005. Direct access to $CD4^+$ T cells specific for defined antigens according to CD154 expression. Nat. Med. 11: 1118-1124. https://doi.org/10.1038/nm1292
  21. Chattopadhyay, P. K., J. Yu, and M. Roederer. 2006. Live-cell assay to detect antigen-specific $CD4^+$ T-cell responses by CD154 expression. Nat. Protoc. 1: 1-6. https://doi.org/10.1038/nprot.2006.1
  22. Holst, P. J., J. P. Christensen, and A. R. Thomsen. 2011. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice. J. Immunol. 186: 3997-4007. https://doi.org/10.4049/jimmunol.1001251
  23. McDermott, D. S. and S. M. Varga. 2011. Quantifying antigen- specific CD4 T cells during a viral infection: CD4 T cell responses are larger than we think. J. Immunol. 187: 5568-5576. https://doi.org/10.4049/jimmunol.1102104
  24. Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682-687. https://doi.org/10.1038/nature04444
  25. Shin, H. and E. J. Wherry. 2007. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19: 408-415. https://doi.org/10.1016/j.coi.2007.06.004
  26. Zinselmeyer, B. H., S. Heydari, C. Sacristan, D. Nayak, M. Cammer, J. Herz, X. Cheng, S. J. Davis, M. L. Dustin, and D. B. McGavern. 2013. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med. 210: 757-774. https://doi.org/10.1084/jem.20121416
  27. Roy, M., T. Waldschmidt, A. Aruffo, J. A. Ledbetter, and R. J. Noelle. 1993. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned $CD4^+$ T cells. J. Immunol. 151: 2497-2510.
  28. Yellin, M. J., K. Sippel, G. Inghirami, L. R. Covey, J. J. Lee, J. Sinning, E. A. Clark, L. Chess, and S. Lederman. 1994. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J. Immunol. 152: 598-608.
  29. Graf, D., S. Muller, U. Korthauer, C. van Kooten, C. Weise, and R. A. Kroczek. 1995. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur. J. Immunol. 25: 1749-1754. https://doi.org/10.1002/eji.1830250639
  30. Hartigan-O'Connor, D. J., C. Poon, E. Sinclair, and J. M. McCune. 2007. Human $CD4^+$ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J. Immunol. Methods 319: 41-52. https://doi.org/10.1016/j.jim.2006.10.008
  31. Miyara, M., Y. Yoshioka, A. Kitoh, T. Shima, K. Wing, A. Niwa, C. Parizot, C. Taflin, T. Heike, D. Valeyre, A. Mathian, T. Nakahata, T. Yamaguchi, T. Nomura, M. Ono, Z. Amoura, G. Gorochov, and S. Sakaguchi. 2009. Functional delineation and differentiation dynamics of human $CD4^+$ T cells expressing the FoxP3 transcription factor. Immunity 30: 899-911. https://doi.org/10.1016/j.immuni.2009.03.019
  32. Hoffmann, P., T. J. Boeld, R. Eder, J. Huehn, S. Floess, G. Wieczorek, S. Olek, W. Dietmaier, R. Andreesen, and M. Edinger. 2009. Loss of FOXP3 expression in natural human $CD4^+CD25^+$ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39: 1088-1097. https://doi.org/10.1002/eji.200838904
  33. Vukmanovic-Stejic, M., E. Agius, N. Booth, P. J. Dunne, K. E. Lacy, J. R. Reed, T. O. Sobande, S. Kissane, M. Salmon, M. H. Rustin, and A. N. Akbar. 2008. The kinetics of $CD4^+Foxp3^+$ T cell accumulation during a human cutaneous antigen-specific memory response in vivo. J. Clin. Invest. 118: 3639-3650. https://doi.org/10.1172/JCI35834
  34. Litjens, N. H., K. Boer, and M. G. Betjes. 2012. Identification of circulating human antigen-reactive CD4+ FOXP3+ natural regulatory T cells. J. Immunol. 188: 1083-1090. https://doi.org/10.4049/jimmunol.1101974
  35. Pacholczyk, R., J. Kern, N. Singh, M. Iwashima, P. Kraj, and L. Ignatowicz. 2007. Nonself-antigens are the cognate specificities of $Foxp3^+$ regulatory T cells. Immunity 27: 493-504. https://doi.org/10.1016/j.immuni.2007.07.019
  36. Kasow, K. A., X. Chen, J. Knowles, D. Wichlan, R. Handgretinger, and J. M. Riberdy. 2004. Human $CD4^+CD25^+$ regulatory T cells share equally complex and comparable repertoires with $CD4^+CD25^-$ counterparts. J. Immunol. 172: 6123-6128. https://doi.org/10.4049/jimmunol.172.10.6123

Cited by

  1. Functional restoration of exhausted CD4+ and CD8+ T cells in chronic viral infection by vinegar-processed flos of Daphne genkwa vol.39, pp.None, 2013, https://doi.org/10.1016/j.cimid.2015.02.001
  2. Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154 vol.199, pp.7, 2013, https://doi.org/10.4049/jimmunol.1700654