DOI QR코드

DOI QR Code

Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens

  • Song, Hyun-Hwa (Department of Periodontology, Research Institute for Oral Science, Gangneung-Wonju National University College of Dentistry) ;
  • Lee, Jae-Kwan (Department of Periodontology, Research Institute for Oral Science, Gangneung-Wonju National University College of Dentistry) ;
  • Um, Heung-Sik (Department of Periodontology, Research Institute for Oral Science, Gangneung-Wonju National University College of Dentistry) ;
  • Chang, Beom-Seok (Department of Periodontology, Research Institute for Oral Science, Gangneung-Wonju National University College of Dentistry) ;
  • Lee, Si-Young (Department of Microbiology and Immunology, Research Institute for Oral Science, Gangneung-Wonju National University College of Dentistry) ;
  • Lee, Min-Ku (Department of Periodontics, Kangbuk Samsung Hospital)
  • Received : 2012.05.26
  • Accepted : 2012.12.20
  • Published : 2013.04.30

Abstract

Purpose: The purpose of this study was to compare the phototoxic effects of blue light exposure on periodontal pathogens in both planktonic and biofilm cultures. Methods: Strains of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis, in planktonic or biofilm states, were exposed to visible light at wavelengths of 400.520 nm. A quartz-tungsten-halogen lamp at a power density of $500mW/cm^2$ was used for the light source. Each sample was exposed to 15, 30, 60, 90, or 120 seconds of each bacterial strain in the planktonic or biofilm state. Confocal scanning laser microscopy (CSLM) was used to observe the distribution of live/dead bacterial cells in biofilms. After light exposure, the bacterial killing rates were calculated from colony forming unit (CFU) counts. Results: CLSM images that were obtained from biofilms showed a mixture of dead and live bacterial cells extending to a depth of $30-45{\mu}m$. Obvious differences in the live-to-dead bacterial cell ratio were found in P. gingivalis biofilm according to light exposure time. In the planktonic state, almost all bacteria were killed with 60 seconds of light exposure to F. nucleatum (99.1%) and with 15 seconds to P. gingivalis (100%). In the biofilm state, however, only the CFU of P. gingivalis demonstrated a decreasing tendency with increasing light exposure time, and there was a lower efficacy of phototoxicity to P. gingivalis as biofilm than in the planktonic state. Conclusions: Blue light exposure using a dental halogen curing unit is effective in reducing periodontal pathogens in the planktonic state. It is recommended that an adjunctive exogenous photosensitizer be used and that pathogens be exposed to visible light for clinical antimicrobial periodontal therapy.

Keywords

References

  1. Darveau RP, Tanner A, Page RC. The microbial challenge in periodontitis. Periodontol 2000 1997;14:12-32. https://doi.org/10.1111/j.1600-0757.1997.tb00190.x
  2. Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, et al. The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 2009;44:751-9. https://doi.org/10.1111/j.1600-0765.2008.01187.x
  3. Adriaens PA, Adriaens LM. Effects of nonsurgical periodontal therapy on hard and soft tissues. Periodontol 2000 2004;36:121-45. https://doi.org/10.1111/j.1600-0757.2004.03676.x
  4. Umeda M, Takeuchi Y, Noguchi K, Huang Y, Koshy G, Ishikawa I. Effects of nonsurgical periodontal therapy on the microbiota. Periodontol 2000 2004;36:98-120. https://doi.org/10.1111/j.1600-0757.2004.03675.x
  5. Amano A. Disruption of epithelial barrier and impairment of cellular function by Porphyromonas gingivalis. Front Biosci 2007;12:3965-74. https://doi.org/10.2741/2363
  6. Meyer DH, Sreenivasan PK, Fives-Taylor PM. Evidence for invasion of a human oral cell line by Actinobacillus actinomycetemcomitans. Infect Immun 1991;59:2719-26.
  7. Thiha K, Takeuchi Y, Umeda M, Huang Y, Ohnishi M, Ishikawa I. Identification of periodontopathic bacteria in gingival tissue of Japanese periodontitis patients. Oral Microbiol Immunol 2007;22:201-7. https://doi.org/10.1111/j.1399-302X.2007.00354.x
  8. Anderson GG, O'Toole GA. Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 2008;322:85-105.
  9. del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 2007; 82:204-9. https://doi.org/10.1038/sj.clpt.6100247
  10. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005; 13:34-40. https://doi.org/10.1016/j.tim.2004.11.010
  11. Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 2004;3:412-8. https://doi.org/10.1039/b211266c
  12. Takasaki AA, Aoki A, Mizutani K, Schwarz F, Sculean A, Wang CY, et al. Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol 2000 2009;51:109-40. https://doi.org/10.1111/j.1600-0757.2009.00302.x
  13. Maisch T. Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 2007;22:83-91. https://doi.org/10.1007/s10103-006-0409-7
  14. Maisch T, Szeimies RM, Jori G, Abels C. Antibacterial photodynamic therapy in dermatology. Photochem Photobiol Sci 2004;3:907-17. https://doi.org/10.1039/b407622b
  15. Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 1999;4:507-17. https://doi.org/10.1016/S1359-6446(99)01412-9
  16. Duerden BI. Pigment production by Bacteroides species with reference to sub-classification. J Med Microbiol 1975; 8:113-25. https://doi.org/10.1099/00222615-8-1-113
  17. Reid JS, Beeley JA, MacFarlane TW. A study of the pigment produced by Bacteroides melaninogenicus. J Dent Res 1976;55:1130. https://doi.org/10.1177/00220345760550062401
  18. Shah HN, Bonnett R, Mateen B, Williams RA. The porphyrin pigmentation of subspecies of Bacteroides melaninogenicus. Biochem J 1979;180:45-50. https://doi.org/10.1042/bj1800045
  19. Loesche WJ. Oxygen sensitivity of various anaerobic bacteria. Appl Microbiol 1969;18:723-7.
  20. Loesche WJ, Gusberti F, Mettraux G, Higgins T, Syed S. Relationship between oxygen tension and subgingival bacterial flora in untreated human periodontal pockets. Infect Immun 1983;42:659-67.
  21. Henry CA, Dyer B, Wagner M, Judy M, Matthews JL. Phototoxicity of argon laser irradiation on biofilms of Porphyromonas and Prevotella species. J Photochem Photobiol B 1996;34:123-8. https://doi.org/10.1016/1011-1344(95)07239-X
  22. Henry CA, Judy M, Dyer B, Wagner M, Matthews JL. Sensitivity of Porphyromonas and Prevotella species in liquid media to argon laser. Photochem Photobiol 1995;61:410-3. https://doi.org/10.1111/j.1751-1097.1995.tb08631.x
  23. Feuerstein O, Ginsburg I, Dayan E, Veler D, Weiss EI. Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem Photobiol 2005;81:1186-9. https://doi.org/10.1562/2005-04-06-RA-477
  24. Feuerstein O, Persman N, Weiss EI. Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: an in vitro study. Photochem Photobiol 2004;80:412-5. https://doi.org/10.1562/2004-06-13-RA-196.1
  25. Soukos NS, Som S, Abernethy AD, Ruggiero K, Dunham J, Lee C, et al. Phototargeting oral black-pigmented bacteria. Antimicrob Agents Chemother 2005;49:1391-6. https://doi.org/10.1128/AAC.49.4.1391-1396.2005
  26. Okamoto K, Nakayama K, Kadowaki T, Abe N, Ratnayake DB, Yamamoto K. Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis. J Biol Chem 1998; 273:21225-31. https://doi.org/10.1074/jbc.273.33.21225
  27. Smalley JW, Silver J, Marsh PJ, Birss AJ. The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the mu-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J 1998; 331(Pt 3):681-5. https://doi.org/10.1042/bj3310681
  28. Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 1999;70:391-475. https://doi.org/10.1562/0031-8655(1999)070<0391:ACOSOY>2.3.CO;2
  29. Gourmelon M, Cillard J, Pommepuy M. Visible light damage to Escherichia coli in seawater: oxidative stress hypothesis. J Appl Bacteriol 1994;77:105-12. https://doi.org/10.1111/j.1365-2672.1994.tb03051.x
  30. Webb RB, Malina MM. Mutagenesis in Escherichia coli by visible light. Science 1967;156:1104-5. https://doi.org/10.1126/science.156.3778.1104
  31. Muller P, Guggenheim B, Schmidlin PR. Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro. Eur J Oral Sci 2007;115:77-80. https://doi.org/10.1111/j.1600-0722.2007.00418.x
  32. Soukos NS, Socransky SS, Mulholland SE, Lee S, Doukas AG. Photomechanical drug delivery into bacterial biofilms. Pharm Res 2000;17:405-9. https://doi.org/10.1023/A:1007568702118
  33. Dahl TA, Midden WR, Hartman PE. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. J Bacteriol 1989;171:2188-94. https://doi.org/10.1128/jb.171.4.2188-2194.1989
  34. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, et al. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2004;70:6188-96. https://doi.org/10.1128/AEM.70.10.6188-6196.2004
  35. Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 2001;35:439-68. https://doi.org/10.1146/annurev.genet.35.102401.090913
  36. Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, et al. The clinical impact of bacterial biofilms. Int J Oral Sci 2011;3:55-65. https://doi.org/10.4248/IJOS11026

Cited by

  1. Can biowarfare agents be defeated with light? vol.4, pp.8, 2013, https://doi.org/10.4161/viru.26475
  2. Efficacy of antimicrobial photodynamic therapy in the management of chronic periodontitis: a randomized controlled clinical trial vol.41, pp.6, 2013, https://doi.org/10.1111/jcpe.12249
  3. A periodontitis-associated multispecies model of an oral biofilm vol.44, pp.2, 2013, https://doi.org/10.5051/jpis.2014.44.2.79
  4. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers vol.18, pp.7, 2013, https://doi.org/10.1007/s00784-013-1151-8
  5. Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing vol.10, pp.2, 2013, https://doi.org/10.2217/fmb.14.109
  6. Effect of Twice-Daily Blue Light Treatment on Matrix-Rich Biofilm Development vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0131941
  7. Comparison of Riboflavin and Toluidine Blue O as Photosensitizers for Photoactivated Disinfection on Endodontic and Periodontal Pathogens In Vitro vol.10, pp.10, 2013, https://doi.org/10.1371/journal.pone.0140720
  8. The effect of blue light on periodontal biofilm growth in vitro vol.30, pp.8, 2015, https://doi.org/10.1007/s10103-015-1724-7
  9. Epithelial cell detachment byPorphyromonas gingivalisbiofilm and planktonic cultures vol.32, pp.4, 2013, https://doi.org/10.1080/08927014.2016.1148693
  10. Effect of Antimicrobial Photodynamic Therapy as an Adjunct to Nonsurgical Treatment of Deep Periodontal Pockets: A Clinical Study vol.7, pp.4, 2013, https://doi.org/10.15171/jlms.2016.39
  11. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression vol.6, pp.None, 2013, https://doi.org/10.1038/srep21172
  12. Antimicrobial efficacy of irradiation with visible light on oral bacteria in vitro: a systematic review vol.9, pp.13, 2013, https://doi.org/10.4155/fmc-2017-0051
  13. The antimicrobial effect of blue light: What are behind? vol.8, pp.6, 2013, https://doi.org/10.1080/21505594.2016.1276691
  14. Antimicrobial blue light inactivation of pathogenic microbes: State of the art vol.33, pp.None, 2013, https://doi.org/10.1016/j.drup.2017.10.002
  15. Remediation of adult black dental stains by phototherapy vol.4, pp.None, 2013, https://doi.org/10.1038/s41405-018-0001-9
  16. Efficacy of an LED toothbrush on a Porphyromonas gingivalis biofilm on a sandblasted and acid-etched titanium surface: an in vitro study vol.48, pp.3, 2013, https://doi.org/10.5051/jpis.2018.48.3.164
  17. Killing mechanism of bacteria within multi-species biofilm by blue light vol.11, pp.1, 2013, https://doi.org/10.1080/20002297.2019.1628577
  18. Comparison of different laser-based photochemical systems for periodontal treatment vol.27, pp.None, 2013, https://doi.org/10.1016/j.pdpdt.2019.06.009
  19. Antimicrobial effect of toothbrush with light emitting diode on dental biofilm attached to zirconia surface: an in vitro study vol.35, pp.3, 2013, https://doi.org/10.14368/jdras.2019.35.3.160
  20. Photoinactivation Sensitivity of Staphylococcus carnosus to Visible‐light Irradiation as a Function of Wavelength vol.96, pp.1, 2013, https://doi.org/10.1111/php.13168
  21. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms vol.9, pp.4, 2020, https://doi.org/10.3390/antibiotics9040171
  22. Rose bengal-mediated photodynamic inactivation against periodontopathogens in vitro vol.34, pp.None, 2013, https://doi.org/10.1016/j.pdpdt.2021.102250
  23. Daily Administered Dual-Light Photodynamic Therapy Provides a Sustained Antibacterial Effect on Staphylococcus aureus vol.10, pp.10, 2013, https://doi.org/10.3390/antibiotics10101240