DOI QR코드

DOI QR Code

Cellular Energy Allocation of a Marine Polychaete Species (Perinereis aibuhitensis) Exposed to Dissolving Carbon Dioxide in Seawater

해수 중 용존 이산화탄소 농도 증가가 두토막눈썹참갯지렁이(Perinereis aibuhitensis)의 세포내 에너지 할당에 미치는 영향

  • Moon, Seong-Dae (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Lee, Ji-Hye (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Sung, Chan-Gyoung (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Choi, Tae Seob (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Lee, Kyu-Tae (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Lee, Jung-Suk (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Kang, Seong-Gil (Maritime and Ocean Engineering Research Institute (MOERI)/Korea Institute of Ocean Science and Technology (KIOST))
  • 문성대 ((주)네오엔비즈 환경안전연구소) ;
  • 이지혜 ((주)네오엔비즈 환경안전연구소) ;
  • 성찬경 ((주)네오엔비즈 환경안전연구소) ;
  • 최태섭 ((주)네오엔비즈 환경안전연구소) ;
  • 이규태 ((주)네오엔비즈 환경안전연구소) ;
  • 이정석 ((주)네오엔비즈 환경안전연구소) ;
  • 강성길 (한국해양과학기술원 해양시스템안전연구소)
  • Received : 2012.11.23
  • Accepted : 2013.01.11
  • Published : 2013.02.25

Abstract

An experiment was conducted to evaluate the biochemical adverse effect of increased carbon dioxide in seawater on marine polychaete, Perinereis aibuhitensis. We measured the available energy reserves, Ea (total carbohydrate, protein, and lipid content) and the energy consumption, Ec (electron transport activity) of Perinereis aibuhitensis exposed for 7-d to a range of $CO_2$ concentration such as 0.39 (control =390 ppmv), 3.03 (=3,030 ppmv), 10.3 (=10,300 ppmv), and 30.1 (=30,100 ppmv) $CO_2$ mM, respectively. The cellular energy allocation (CEA) methodology was used to assess the adverse effects of toxic stress on the energy budget of the test organisms. The results of a decrease in CEA effect of increased carbon dioxide in seawater from all individual in Ea and Ec. Increase of carbon dioxide reduced pH in seawater, significantly. The chemical changes in sea- water caused by increasing $pCO_2$ might cause stresses to test organisms and changes in the cellular energy allocations. Results of this study can be used to understand the possible influence of $CO_2$ concentration increased by the leakage from sub-sea bed storage sites as well as fossil fuel combustion on marine organisms.

해수 중 용존 이산화탄소 농도 증가가 두토막눈썹참갯지렁이(Perinereis aibuhitensis)의 세포내 에너지 할당(CEA, cellular energy allocation)에 미치는 영향을 알아보고자 0.39(대조구=390 ppmv), 3.03 (=3,030 ppmv), 10.3 (=10,300 ppmv), 그리고 30.1 (=30,100 ppmv) mM의 이산화탄소 농도를 갖는 해수에 청충을 7일간 노출하여 세포 에너지와 세포 전자전달체계(ETS, electro transport system) 활성을 분석하였다. 실험생물의 지질, 당질, 그리고 단백질 함량과 ETS로부터 에너지 소비율을 계산하여 CEA를 산출한 결과 이산화탄소 농도가 증가함에 따라 CEA가 감소하였다. 지질의 경우 이산화탄소 농도가 증가 할수록 지질함량도 증가하였으며, 당질은 이산화탄소 농도가 3.03 mM인 실험구에서 가장 낮고 10.3 mM인 실험구에서 일부 증가하였으나 가장 높은 농도에서는 다시 감소하는 경향을 보였다. 단백질은 이산화탄소 농도가 3.03 mM인 실험구에서는 영향이 없었지만, 10.3 mM 이상의 농도에서부터 유의한 수준의 CEA 감소가 나타났다. 에너지 소비율은 이산화탄소 최고 농도에서만 유의한 증가 현상이 나타났지만, CEA는 대조구와 비교해 3.03 mM의 실험구부터 감소하였다. 이산화탄소는 해수중 pH를 낮추어 시험생물에 스트레스를 증가시키고, 세포내 에너지 할당변화에 영향을 미친 것으로 판단된다. 해산 갯지렁이를 이용한 CEA 평가결과는 대기 중 이산화탄소의 증가 또는 이산화탄소 저감을 위해 추진되고 있는 해양 지중저장사업 과정에서 누출된 이산화탄소의 해양생태계 위해성을 예측하는 자료로 이용될 수 있을 것으로 판단된다.

Keywords

References

  1. 강성길(Seong-Gil Kang), 2006, "기후변화 대응을 위한 이산화탄 소 해양처리기술 (Marine processing techniques of carbon dioxide for responding to climate change)", News & Information for Chemical Engineers (NICE), Vol.24, No.5, 424-432 (in Korean).
  2. Ministry of Science and Technology, 1991, "Studies on the resource assessment and rearing techniques of marine polychaetes in korea", BSPG 00122-366-3, 318 pp (in Korean).
  3. 곽인실, 이원철, 이창훈, 방현우, 원두희, 박기연, 박정안, 2008, "수서 지표동물의 생태독성 연구방법(Ecotoxicological research method using aquatic bioindicators)", 정행사(Junghaengsa), 140 pp (in Korean).
  4. National Research Foundation of Korea, 2004, "Effects of endocrine disruptors on marine organisms", R01-2001-000-00251-0, 100 pp (in Korean).
  5. Bagheri, F., Talebi, K. and Hosseininaveh, V., 2010, "Cellular energy allocation of pistachio green stink bug, Brachynema germari Kol. (Hemiptera.: Pentatomidae) in relation to juvenoid pyriproxyfen", African Journal of Biotechnology, Vol.9, No.35, 5746-5753.
  6. Bamber R.N., 1990, "The effects of acidic seawater on three species of lamellibranch mollusc", J. Exp. Mar. Biol. Ecol., Vol.143, 181-191. https://doi.org/10.1016/0022-0981(90)90069-O
  7. Batten, S.D., and Bamber, R.N., 1996, "The effects of acidified seawater on the polychaete Nereis virens Sars, 1835", Marine Pollution Bulletin, Vol.32, No.3, 283-287. https://doi.org/10.1016/0025-326X(95)00163-H
  8. Berge, J.A., Bjerkeng, B., Pettersen, O., Schaanning, M.T. and Oxnevad, S., 2006, "Effects of increased sea water concentration of $CO_{2}$ on growth of the bivalve Mytilus edulis L.", Chemosphere, Vol.62, No.4, 681-687. https://doi.org/10.1016/j.chemosphere.2005.04.111
  9. Bligh, E.G. and Dyer, W.J., 1959, "A rapid method of total lipid extraction and purification", Can. J. Biochem. Physiol., Vol.37, No.8, 911-917. https://doi.org/10.1139/o59-099
  10. Bradford, M.M., 1976, "A rapid and sensitive method for the quantification of microgram quantities of protein, utilizing the principle of protein-dye binding", Analytical Biochemistry, Vol.72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. De Coen, W.M. and Janssen, C.R., 1997, "The use of biomarkers in Daphnia magna tixicity testing. IV. Cellular energy allocation: a new methodology to assess the energy budget of toxicantstressed Daphnia populations", Journal of Aquatic Ecosystem Stress and Recovery, Vol.6, 43-55. https://doi.org/10.1023/A:1008228517955
  12. De Coen, W.M. and Janssen, C.R., 2003, "The missing biomarker link: Relationships between effects on the cellular energy allocation biomarker of toxicant-stressed Daphnia magna and corresponding population characteristics", Environ. Toxicol. Chem., Vol.22, 1632-1641. https://doi.org/10.1897/1551-5028(2003)22<1632:TMBLRB>2.0.CO;2
  13. Erk, M., Ivankovic, D. and Strizak Z., 2011, "Cellular energy allocation in mussels (Mytilus galloprovincialis) from the stratified estuary as a physiological biomarker", Marine Pollution Bulletin, Vol.62, 1124-1129. https://doi.org/10.1016/j.marpolbul.2011.02.056
  14. Gentzis, T., 2000, "Subsurface sequestration of carbon dioxide - an overview from an Alberta (Canada) perspective", International Journal of Coal Geology, Vol.43, 287-305. https://doi.org/10.1016/S0166-5162(99)00064-6
  15. Gnaiger, E., 1983, "Calculation of energetic and biochemical equivalents of respiratory oxygen consumption", In: E. Gnaiger & H. Forstner (ed), Polarographic Oxygen Sensors, Springer-Verlag, Berlin, 337-345.
  16. Herzog, H.J., 2001, "What Future for Carbon Capture and Sequestration?", Environmental Science and Technology, Vol.35, 148A-153A. https://doi.org/10.1021/es012307j
  17. IPCC, 2001, "Climate Change 2001; Scientific Basis", Cambridge University Press, Cambridge, U.K., 994 pp.
  18. IPCC, 2005, "IPCC Special Report on Carbon Dioxide Capture and Storage", Cambridge University Press, Cambridge, U.K., 431 pp.
  19. Kita, J. and Ohsumi, T., 2004, "Perspectives on Biological Research for $CO_{2}$ Ocean Sequestration", Journal of Oceanography, Vol.60, No.4, 695-703. https://doi.org/10.1007/s10872-004-5762-1
  20. Knutzen, J., 1981, "Effects of decreased pH on marine organisms", Marine Pollution Bulletin, Vol.12, 25-29. https://doi.org/10.1016/0025-326X(81)90136-3
  21. Kurihara, H. and Shirayama, Y., 2004, "Effects of increased atmospheric $CO_{2}$ on sea urchin early development", Marine Ecology Progress Series, Vol.274, 161-169. https://doi.org/10.3354/meps274161
  22. Lee, J.S., Lee, K.T., Kim, C.K., Park, G.H., Lee, J.H., Park, Y.G. and Gang, S.G., 2006, "Influence of the increase of dissolved $CO_{2}$ Concentration on the marine organisms and ecosystems", Journal of the Korean Society for Marine Environmental Engineering, Vol.9, No.4, 243-252.
  23. Longbottom, M.R., 1970, "The distribution of Arenicola marina (L.) with particular reference to the effects of the particle size and organic matter of the sediments", Journal of Experimental Marine Biology and Ecology, Vol.5, 138-157. https://doi.org/10.1016/0022-0981(70)90013-4
  24. Macrae, K.J., 2009, "Effects on cellular energy allocation and total oxyradical capacity in contamination exposed Arenicola marina", Master thesis, University of Oslo, Norway, 69 pp.
  25. Mitsunaga, Y., Sakamoto, W., Arai N. and Kasai, A., 1999, "Estimation of the metabolic rate of wild red sea bream Pagrus major in different water temperature", Nippon Suisan Gakkaishi, Vol.65, No.1, 48-54. https://doi.org/10.2331/suisan.65.48
  26. Moolman, L., Van Vuren, J.H. and Wepener, V., 2007, "Comparative studies on the uptake and effects of cadmium and zinc on the cellular energy allocation of two freshwater gastropods", Ecotoxicology and Environmental Safety, Vol.68, 443-450. https://doi.org/10.1016/j.ecoenv.2006.12.017
  27. Olsen, G.H., Sva, E., Carroll, J., Camus, L., De Coen, W., Smolder, R., Overaas, H. and Hylland, K., 2007, "Alterations in the energy budget of Arctic benthic species exposed to oil-related compounds", Aquatic Toxicology, Vol.83, 85-92. https://doi.org/10.1016/j.aquatox.2007.03.012
  28. Olsen, G.H., Carroll, J., Sva, E. and Camus, L., 2008, "Cellular energy allocation in the Arctic sea ice amphipod Gammarus wilkitzkii exposed to the water soluble fractions of oil", Marine Environmental Research, Vol.66, 213-214. https://doi.org/10.1016/j.marenvres.2008.02.063
  29. Owens, T.G. and King, F.D., 1975, "The measurement of respiratory electron transport system activity in marine zooplankton", Marine Biology, Vol.30, 27-36. https://doi.org/10.1007/BF00393750
  30. Packard, T.T., Berdalet, E., Blasco, D., Roy, S.O., St-Amand, L., Lagace, B., Lee K. and Gagno, J.P., 1996, "Oxygen consumption in the marine bacterium Pseudomonas nautica Predicted from ETS activity and bisubstrate enzyme kinetics", Journal of Plankton Research, Vol.18, No.10, 1819-1835. https://doi.org/10.1093/plankt/18.10.1819
  31. Portner, H.O., 2008, "Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view", Marine Ecology Progress Series, Vol.373, 203-217. https://doi.org/10.3354/meps07768
  32. Roe, J.H. and Dailey, R.E., 1966, "Determination of glycogen with the anthrone reagent", Anal. Biochem., Vol.15, 245-250. https://doi.org/10.1016/0003-2697(66)90028-5
  33. Seibel, B.A. and Walsh, P.J., 2001, "Potential impacts of $CO_{2}$ injection on deep-sea biota", Science, Vol.294, No.5541, 319-320. https://doi.org/10.1126/science.1065301
  34. Smart, G., 1978, "Investigation of the toxic mechanisms of ammonia to fish gas exchange in rainbow trout exposed to acutely lethal concentrations", Journal of Fish Biology, Vol.12, 93-104. https://doi.org/10.1111/j.1095-8649.1978.tb04155.x
  35. Smolders, R., Boeck, G.D. and Blust, R., 2003, "Changes in cellular energy budget as a measure of whole effluent toxicity in zebrafish (Danio rerio)", Environmental Toxicology and Chemistry, Vol.22, 890-899. https://doi.org/10.1002/etc.5620220429
  36. Smolders, R., Bervoets, L., De Coen W. and Blust, R., 2004, "Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization", Environmental Pollution, Vol.129, 99-112. https://doi.org/10.1016/j.envpol.2003.09.027
  37. Soetaert, A., Vandenbrouck, T., van der Ven, K., Maras, M., van Remortel, P., Blust, R. and De Coen, W., 2007, "Molecular responses during cadmium-induced stress in Daphnia magna: Integration of differential gene expression with higher-level effects", Aquatic Toxicology, Vol.83, 212-222. https://doi.org/10.1016/j.aquatox.2007.04.010
  38. Stomperudhaugen, E.S., Overas, N.H.H., Langford, K., De Coen, W., Smolders, R. and Hylland, K., 2009, "Cellular Energy Allocation in Hediste diversicolor Exposed to Sediment Contaminants", Journal of Toxicology and Environmental Health, Part A, Vol.72, 244-253. https://doi.org/10.1080/15287390802539178
  39. Sung, C.G., Moon, S.D., Kim, H.J., Choi, T.S., Lee, K.T., Lee, J.S. and Kang, S.G., 2010, "Influence of increased carbon dioxide concentration on the bioluminescence and cell density of marine bacteria Vibrio fischeri", The Sea Journal of the Korean Society of Oceanography, Vol.15, No.1, 8-15.
  40. U.S. EPA., 1990, "Protocol for juvenile Neanthes sediment bioassay", U.S. Environmental Protection Agency, Puget Sound Estuary Program, Seattle, WA., 24 pp.
  41. Vandenbrouck, T., Soetaert, A., van der Ven, K., Blust, R. and De Coen, W., 2009, "Nickel and binary metal mixture responses in Daphnia magna: Molecular fingerprints and (sub)organismal effects", Aquatic Toxicology, Vol.92, 18-29. https://doi.org/10.1016/j.aquatox.2008.12.012
  42. Verslycke, T. and Janssen, C.R., 2002, "Effects of a changing abiotic environment on the energy metabolism in the estuarine mysid shrimp Neomysis integer (Crustacea: Mysidacea)", Journal of Experimental Marine Biology and Ecology, Vol.279, 61-72. https://doi.org/10.1016/S0022-0981(02)00339-8
  43. Verslycke, T., Vercauteran, J., Devos, C., Moens, L., Sandra P. and Janssen, C.R., 2003, "Cellular energy allocation in the estuarine mysid shrimp Neomysis integer (Crustacea: Mycidacea) following tributyltin exposure", Journal of Experimental Marine Biology and Ecology, Vol.288, 167-179. https://doi.org/10.1016/S0022-0981(03)00006-6
  44. Verslycke, T., Ghekiere, A. and Janssen, C.R., 2004a, "Seasonal and spatial patterns in cellular energy allocation in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) of the Scheldt estuary (The Netherlands)", Journal of Experimental Marine Biology and Ecology, Vol.306, 245-267. https://doi.org/10.1016/j.jembe.2004.01.014
  45. Verslycke, T., Roast, S.D., Widdows, J., Jones, M.B. and Janssen, C.R., 2004b, "Cellular energy allocation and scope for growth in the estuarine mysid Neomysis integer (Crustacea: Mycidacea) following chlorpyrifos exposure: a method comparison", Journal of Experimental Marine Biology and Ecology, Vol.306, 1-16. https://doi.org/10.1016/j.jembe.2003.12.022

Cited by

  1. -Induced Acidification for Marine Organisms vol.17, pp.2, 2014, https://doi.org/10.7846/JKOSMEE.2014.17.2.153