DOI QR코드

DOI QR Code

Development on Classification Standard of Drought Severity

가뭄심도 분류기준의 개선방안 제시

  • Kwon, Jinjoo (Dept. Urban Environment System Eng., Seokeong Univ.) ;
  • Ahn, Jaehyun (Department of Civil & Architectural Eng., Seokeong Univ.) ;
  • Kim, Taewoong (Dept. of Civil and Environmental Eng., Hanyang Univ.)
  • 권진주 (서경대학교 대학원 도시환경시스템공학과) ;
  • 안재현 (서경대학교 이공대학 토목건축공학과) ;
  • 김태웅 (한양대학교 공학대학 건설환경공학과)
  • Received : 2012.06.14
  • Accepted : 2012.10.12
  • Published : 2013.02.28

Abstract

As drought is phenomenon of nature with unavoidability and repeated characteristic, it is necessary to plan to respond to it in advance and construct drought management system to minimize its damage. This study suggested standard for classification of drought, which is appropriate for our nation to respond to drought by assessing drought severity in the regions for this study. For data collection, 61 locations were selected - the locations keep precipitation data over 30 years of observation. And data for monthly precipitation for 37 years from 1973 were used. Based on this, this study classified unified drought interval into four levels using drought situation phases which are used in government. For standard for classification of drought severity fit to our nation, status of main drought was referred and these are classified based on accumulated probability of drought - 98~100% Exceptional Drought, 94~98% Extreme Drought, 90~94% Severe Drought, 86~90% Moderate Drought. Drought index (SPI, PDSI) was made in descending order and quantitative value of drought index fit to standard of classification for drought severity was calculated. To compare classification results of drought severity of SPI and PDSI with actual drought, comparison by year and month unit were analyzed. As a result, in comparison by year and comparison by month unit of SPI, drought index of each location was mostly identical each other between actual records and analyzed value. But in comparison by month unit of PDSI for same period, actual records did not correspond to analyzed values. This means that further study about mutual supplement for these indexes is necessary.

가뭄은 불가피성과 반복성을 가진 자연 현상이므로 가뭄 발생 전 사전대비계획과 가뭄발생시 가뭄관리체계 구축을 통해 그 피해를 최소화해야 한다. 본 연구에서는 대상지역의 가뭄심도를 평가하여 가뭄상황에 대처하고자 우리나라에 적합한 가뭄 분류기준을 제시하였다. 관측년수 30년 이상의 강우자료를 확보한 61개 지점에 대해 1973년부터 37년 기간의 월강우량 자료를 사용하였고, 현재 국가에서 사용하고 있는 가뭄상황단계를 그대로 적용하여 가뭄 구간을 총 4등급으로 구분하였다. 기존의 주요 가뭄발생현황을 참고하여 우리나라에 맞는 가뭄심도의 분류기준을 가뭄 발생의 누가확률 98~100%는 예외적인 가뭄, 94-98%는 극심 가뭄, 90~94%는 심한 가뭄, 86~90%는 보통 가뭄으로 구분하였다. 각 지점의 가뭄지수(SPI, PDSI)를 내림차순으로 작성하여 가뭄심도 분류기준에 맞는 가뭄지수의 정량적 값을 산정하였다. SPI와 PDSI의 가뭄심도 분류 결과와 실제 가뭄을 비교하기 위해 년 단위 비교와 월 단위 비교를 분석한 결과, 년 단위 비교와 SPI의 월 단위 비교는 각 지역의 가뭄지수 평가가 대부분 일치하게 나타났으나 같은 기간의 PDSI의 월 단위 비교는 일치하지 않는 기간도 나타났다. 이는 이들 지수의 상호보완에 대한 추후 연구의 필요성을 보여주는 것으로 판단되었다.

Keywords

References

  1. Ahn, S.R., Kwon, H.J., Park, J.Y., and Kim, S.J. (2009). "Assessment of Agricultural Drought Using Reservoirs Information." Conference on Korea Water Resources Association, Korea Water Resources Association, pp. 68-73.
  2. Edwards, D.C., and McKee, T.B. (1997). "Characteristics of 20th century Drought in the United States at Multiple Time Series." Master thesis, Colorado State University, Colorado.
  3. Guttma, N.B. (1998). "Comparing the Palmer Drought Index and the Standardized Precipitation Index." Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 113-122. https://doi.org/10.1111/j.1752-1688.1998.tb05964.x
  4. Kim, D.H., and Yoo, C.S. (2006). "Analysis of Spatial Distribution of Droughts in Korea through Drought Severity-Duration-Frequency Analysis." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 39, No. 9, pp. 745-754. https://doi.org/10.3741/JKWRA.2006.39.9.745
  5. Kim, M.S., Oh, T.S., Moon, Y.I., and Kwon, H.G. (2009). "Analysis and Comparison of Meteorological Drought Index" Conference on Korean Society of Civil Engineers, Korean Society of Civil Engineers, pp. 3406-3409.
  6. Kim, S.J., Lee, K.Y., and Sin, D.W. (1995). "Drought Index Calculation for Irrigation Reservoirs." Journal of the Korean Society ofAgricultural Engineers, The Korean Society of Agricultural Engineers, Vol. 37, No. 6, pp. 103-111.
  7. Korea Water Resources Corporation (2002). Report of Drought Monitoring System of Measure Establishment Study.
  8. Korea Water Resources Corporation (2005). Report of Establishment for Drought Monitoring System.
  9. Kwon, H.J., Lim, H.J., and Kim, S.J. (2007). "Drought Assessment of Agricultural District using Modified SWSI." Journal of the Korean Association of Geographic Information Studies, The Korean Association of Geographic Information Studies, Vol. 10, No. 1, pp. 22- 34.
  10. Lee, D.R., Moon, J.W., Lee, D.H., and Ahn, J.H. (2006). "Development of Water Supply Capacity Index to Monitor Droughts in a Reservoir." Conference on Korea Water Resources Association, Korea Water Resources Association, Vol. 39, No. 3, pp. 199-214.
  11. Lee, H.K., Choi, B.M., and Lee, H.G. (2001). "Analysis of Drought Status and Restoration Measure from 2001 in Korea." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 34, No. 4, pp. 32-44.
  12. Lee, J.H., Jung, S.M., Kim, S.J., and Lee, M.H. (2006). "Development of Drought Monitoring System: I. Applicability of Drought Indices for Quantitative Drought Monitoring." Journal of KoreaWater Resources Association, Korea Water Resources Association, Vol. 39, No. 9, pp. 787-800. https://doi.org/10.3741/JKWRA.2006.39.9.787
  13. Lim, K.J., Sim, M.P., Sung, K.W., and Lee, H.J. (2001). "Estimation of drought indicator using various time series." Conference on Korea Water Resources Association, Korea Water Resources Association, Vol. 34, No. 6, pp. 673-685.
  14. Mckee, T.B., Doesken, N.J., and Kleist, J. (1993). "The Relationship of Drought Frequency and Duration to Time Scales." 8th Conference on Applied Climatology, Aneheim, CA, pp. 179-184.
  15. Ministry of Construction & Transportation (2002). Report of 2001 Drought Investigation Record, Korea Institute of Construction Technology, pp. 14-29.
  16. National Disaster Management Institute (1998). Analysis and Investigation of Causes of the Drought Damage, pp. 8.
  17. Palmer, W.C. (1965). "Meteorological Drought." Research Report, No. 45, U.S. Dept. of Commerce Weather Bureau.
  18. Ryu, J.H., Lee, D.R., Ahn, J.H., and Yoon, Y.N. (2002). "A Comparative Study on the Drought Indices for Drought Evaluation." Conference on Korea Water Resources Association, Korea Water Resources Association, Vol. 35, No. 4, pp. 397-410.
  19. Shafer, B.A., and Dezman, L.E. (1982). "Development of surface water supply index to assess the severity of drought conditions in snowpack runoff areas." Proc. Western Snow Conference, Reno, Nevada, pp. 164- 175.
  20. Steinemann, A. (2003). "Drought Triggers: A stochastic Approach to Evaluation." Journal of the AmericanWater Resources Association, Vol. 39, No. 5, pp. 1217- 1234. https://doi.org/10.1111/j.1752-1688.2003.tb03704.x
  21. Taebaek-si (2009). A Drought White Paper.
  22. Tsakiris, G., Pangalou, D., and Vangelis, H. (2006). "Regional Drought Assessment Based on the Reconnaissance Drought Index(RDI)." Water resources management, Vol. 21, No. 5, pp. 821-833.
  23. Yoon, Y.N., Ahn, J.H., and Lee, D.R. (1997). "Hydrological Drought Analysis using Palmer Drought Index Method." Conference on Korea Water Resources Association, Korea Water Resources Association, Vol. 30, No. 4, pp. 317-326.

Cited by

  1. Quantitative definition and spatiotemporal distribution of little water season (LIWAS) in Korea vol.52, pp.4, 2016, https://doi.org/10.1007/s13143-016-0012-1
  2. Projection and Analysis of Drought according to Future Climate and Hydrological Information in Korea vol.47, pp.1, 2014, https://doi.org/10.3741/JKWRA.2014.47.1.71
  3. Probabilistic Assessment of Drought Characteristics based on Homogeneous Hidden Markov Model vol.34, pp.1, 2014, https://doi.org/10.12652/Ksce.2014.34.1.0145