DOI QR코드

DOI QR Code

Methods to Characterize the Thermal Stratification in Thermal Energy Storages

열에너지 저장소 내 열성층화를 평가하기 위한 기법

  • 박도현 (한국지질자원연구원 지구환경연구본부) ;
  • 류동우 (한국지질자원연구원 지구환경연구본부) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부) ;
  • 선우춘 (한국지질자원연구원 지구환경연구본부) ;
  • 한공창 (한국지질자원연구원 지구환경연구본부)
  • Received : 2013.01.22
  • Accepted : 2013.02.07
  • Published : 2013.02.28

Abstract

A primary objective in creating a stratified thermal storage is to maintain the thermodynamic quality of energy, so thermally stratified energy can be extracted at temperatures required for target activities. The separation of the thermal energy in heat stores to layers with different temperatures, i.e., the thermal stratification is a key factor in achieving this objective. This paper introduces different methods that have been proposed to characterize the thermal stratification in heat stores. Specifically, this paper focuses on the methods that can be used to determine the ability of heat stores to promote and maintain stratification during the process of charging, storing and discharging. In addition, based on methods using thermal stratification indices, the degrees of stratification of stored energy in Lyckebo rock cavern in Sweden were compared and the applicability of the methods was investigated.

열에너지를 성층화하여 저장하는 주된 목적은 에너지의 열역학적 질을 유지하기 위한 것으로서 열에너지의 성층화를 통해 필요시 원하는 온도에서 열에너지 활용이 가능하다. 저장소 내 열에너지의 온도에 따른 분리, 즉 열성층화는 이와 같은 열에너지의 활용에 영향을 미치는 핵심 인자이다. 본 논문에서는 열성층화의 정도를 평가할 수 있는 기존에 제안된 기법들을 소개하였으며, 특히 열에너지의 주입, 저장, 배출 과정 동안 열저장소의 성층화와 관련된 성능을 결정하는 데 사용될 수 있는 기법들을 중심으로 개념 및 특징을 살펴보았다. 또한 열성층화 지수를 이용하는 방법을 토대로 스웨덴 Lyckebo 암반공동 내 열에너지의 성층도를 비교 분석하여 기법의 적용성을 조사하였다.

Keywords

References

  1. Abdoly, M.A. and D. Rapp, 1982, Theoretical and experimental studies of stratified thermocline storage of hot water, Energy Conversion and Management 22, 275-285. https://doi.org/10.1016/0196-8904(82)90053-X
  2. Davidson, J.H., D.A. Adams and J.A. Miller, 1994, A coefficient to characterize mixing in solar water storage tanks, Journal of Solar Energy Engineering 116, 94-99. https://doi.org/10.1115/1.2930504
  3. Ghaddar, N.K. and A.M. Al-Marafie, 1989, Numerical simulation of stratification behavior in thermal storage tanks, Applied Energy 32, 225-239. https://doi.org/10.1016/0306-2619(89)90031-7
  4. Haller, M.Y., C.A. Cruickshank, W. Streicher, S.J. Harrison, E. Andersen and S. Furbo, 2009, Methods to determine stratification efficiency of thermal energy storage — Review and theoretical comparison, Solar Energy 83, 1847-1860. https://doi.org/10.1016/j.solener.2009.06.019
  5. Loehrke R.L., J.C. Hoolzer, H.N. Cari and M.K. Sharp, 1979, Stratification enhancement in liquid thermal storage tanks, Journal of Energy 3.3, 129-130. https://doi.org/10.2514/3.62425
  6. Panthalookaran, V., W. Heidemann, and H. Müller-Steinhagen, 2007, A new method of characterization for stratified thermal energy stores, Solar Energy 81.8, 1043-1054. https://doi.org/10.1016/j.solener.2006.11.012
  7. Park E.T., S.I. Hwang and Y.I. Choi, 1989, Experimental study on the thermal storage efficiency through variable porous manifolds in a test strorage tank, Solar Energy 9.3, 37-43.
  8. Park, D., H.M. Kim, D.W. Ryu, B.H. Choi, C. Sunwoo and K.C. Han, 2012, Numerical study on the thermal stratification behavior in underground rock cavern for thermal energy storage (TES), Tunnel and Underground Space 22.3, 188-195. https://doi.org/10.7474/TUS.2012.22.3.188
  9. Rosen, M.A., 2001, The exergy of stratified thermal energy storages, Solar Energy 71, 173-185. https://doi.org/10.1016/S0038-092X(01)00036-6
  10. Rosengarten, G., 1999, A second law approach to characterising thermally stratified hot water storage with application to solar water heaters, Journal of Solar Energy Engineering 121, 194-200. https://doi.org/10.1115/1.2888166
  11. Shah, L.J. and S. Furbo, 2003, Entrance effects in solar storage tanks, Solar Energy 75.4, 337-348. https://doi.org/10.1016/j.solener.2003.04.002
  12. Shyu R.J., J.Y. Lin and L.J. Fang, 1989, Thermal analysis of stratified storage tanks, ASME Journal of Solar Energy Engineering 111.1, 54-61. https://doi.org/10.1115/1.3268287
  13. Sliwinski, B.J., A.R. Mech and T.S. Shih, 1978, Stratification in thermal storage during charging, Proceedings of the 6th International Heat Transfer Conference, Toronto, Canada, Vol. 4, 149-154.
  14. Wu, L. and R.B. Bannerot, 1987, Experimental study of the effect of water extraction on thermal stratification in storage, Proceedings of the 1987 ASME-JSME-JSES Solar Energy Conference, Honolulu, USA, Vol. 1, 445-451.
  15. Zurigat, Y.H. and A.J. Ghajar, 2002, Heat transfer and stratification in sensible heat storage, In: Dincer, I. and M. Rosen (Eds.), Thermal Energy Storage - Systems and Applications, John Wiley & Sons, New York, 264-270.

Cited by

  1. The Effect of a Manifold in a Storage Tank Applied to a Solar Combisystem vol.26, pp.7, 2014, https://doi.org/10.6110/KJACR.2014.26.7.322
  2. The effect of manifold in liquid storage tank applied to solar combisystem vol.29, pp.3, 2015, https://doi.org/10.1007/s12206-015-0244-5